Abstract
Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective distance measure and an efficient query processing method for such data is a challenging problem. This paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. For efficient indexing, we devise a new adaptive segmentation method that chooses representative frames among similar frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases is reduced greatly (${\times}1/25$) but the search capability of SMoFinder is equal to or superior to that of other systems.
대규모 인간 동작 데이터베이스에서 고차원의 데이터를 처리하는 것이 큰 비용을 요구하기에, 최근 데이터베이스 및 그래픽스 학계는 인간 동작 데이터 질의 및 접근에 큰 관심을 가지게 되었다. 특히, 인간 동작 데이터를 위한 효과적인 유사도(거리) 측정 방법이나 질의 처리는 여전히 많은 연구진들이 도전하고 있는 문제이다. 이에, 본 연구진은 SMoFinder 라고 명명한 동작 질의 처리 시스템을 제안한다. SMoFinder는 새롭게 고안된 운동학적 거리 측정 그리고 적응적 프레임 세그멘테이션에 기반하는 효율적인 인덱싱을 사용하여 동작 질의를 처리한다. 이를 위해, SMoFinder에서는 인간 동작을 다연결 물리 운동으로 간주하고 새로운 가중치 Minkowski 함수를 정의했다. 또한, 효율적인 인덱싱을 위해 모든 프레임을 저장하지 않고 유사한 프레임들 중에서 대표 프레임을 뽑아서 저장하는 적응적 세그멘테이션을 고안했다. 그리고, 효율적인 검색을 위해 이들 대표 프레임들만 가지고 k-근접 이웃 질의를 수행하는 새로운 방법을 제안한다. 마지막으로, SMoFinder가 데이터베이스 용량이 크게 줄지만(1/25배), 검색 능력은 다른 시스템과 동일하거나 우월하다는 것을 실험을 통해 보여주고자 한다.