Xenografted Tumorigenesis in the oral vestibule of nude mice by Snail transfection: Histological and immunohistochemical study

  • Kim, Moon-Key (Department of Oral and Maxillofacial Surgery, National Health Insurance Corporation Ilsan Hospita) ;
  • Lee, Eun-Ha (Department of Oral Pathology, College of Dentistry, Yonsei University) ;
  • Kim, Jin (Oral Cancer Research Institute, Department of Oral and Maxillofacial Surgery) ;
  • Yook, Jong-In (Oral Cancer Research Institute, Department of Oral and Maxillofacial Surgery) ;
  • Cha, In-Ho (Oral Cancer Research Institute, Department of Oral and Maxillofacial Surgery)
  • Published : 2009.08.31

Abstract

Purpose: The purpose of this study is to investigate the epithelial-mesenchymal transition (EMT) induced by Snail transcription factor and Snail-transfected in vivo tumors with histopathological features. Materials and methods: We induced in vivo xenografted tumorigenesis in the oral vestibules of nude mice by a Snail transfected HaCaT cell line and investigated morphological and immunohistochemical features in Snail expressive tumors. Results: We identified tumor masses in 14 out of 15 nude mice in the HaCaT-Snail cell inoculation group, but no tumors were present in any of the HaCaT cell inoculation group. Induced tumors showed features of poorly differentiated carcinoma with invasion to neighboring muscles and bones. The HaCaT-Snail tumors showed decreased expressions of E-cadherin and cytokeratin, but showed increased expressions of vimentin and N-cadherin. Discussion: The Snail transfected xenograft can improve productivity of malignant tumors, show various histopathological features including invasive growth, and aid in the investigation of tumor progression and the interaction with surrounding tissues.

Keywords

References

  1. Arias AM. Epithelial mesenchymal interactions in cancer and development. Cell 2001;105:424-31 https://doi.org/10.1016/S0092-8674(01)00365-8
  2. Savagner P. Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001;23:912-23 https://doi.org/10.1002/bies.1132
  3. Weis WI, Nelson WJ. Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 2006;281(47):35593-7 https://doi.org/10.1074/jbc.R600027200
  4. Bracke ME, Van Roy FM, Mareel M. The E-cadherin/catenin complex in invasion metastasis. In Attempts to Understand Metastasis Formation I (Gunthert U, Birchmeier W, eds), 1996, 123-61, Springer, Berlin
  5. Mareel M, Boterberg T, Noe V, Van Hoorde L, Vermeulen S, Bruyneel E, Bracke M. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J Cell Physiol. 1997;173(2): 271-4 https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<271::AID-JCP34>3.0.CO;2-G
  6. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, Van Roy FM. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66(1): 107-119 https://doi.org/10.1016/0092-8674(91)90143-M
  7. Campbell RJ, Pignatelli M. Molecular histology in the study of solid tumours. J Clin Pathol Mol Pathol 2002;55:80-2 https://doi.org/10.1136/mp.55.2.80
  8. Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signaling. Int J Dev Biol 2004;48:463-76 https://doi.org/10.1387/ijdb.041793ld
  9. Cavallaro U. N-cadherin as an invasion promoter: a noval target for antitumor therapy? Curr Opin Investg Drugs 2004;5(12): 1274-8
  10. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF. Differential expression of the epithelialmesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J pathol 2002;161(5):1881-91 https://doi.org/10.1016/S0002-9440(10)64464-1
  11. Tomita K, Bokhoven A, van Leenders GJL, Ruijter ETG, Jansen CFJ, Bussemakers MJG, Shalken JA. Cadherin switching in human prostate cancer progression. Cancer Res 2000;60:3650-4
  12. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induced cell migration, invasion, and metastasis. J Cell Biol 2000;148:779-90 https://doi.org/10.1083/jcb.148.4.779
  13. Bouley JL, Dennefeld C, Alberga A. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 1987;330(6146):395-8 https://doi.org/10.1038/330395a0
  14. Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001;37: 65-71 https://doi.org/10.1016/S1368-8375(00)00059-2
  15. Takkunen M, Grenman R, Hukkanen M, Garcl′a de Herreros A, Virtanen I. Snail-dependent and -independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 2006; 54(11):1263-75 https://doi.org/10.1369/jhc.6A6958.2006
  16. Fusenig NE, Boukamp P. Multiple stages and genetic alterations in immortalization malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 1998; 23(3): 144-58 https://doi.org/10.1002/(SICI)1098-2744(199811)23:3<144::AID-MC3>3.0.CO;2-U
  17. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10(8):789-99 https://doi.org/10.1038/nm1087
  18. Karakosta A, Golias Ch, Charalabopoulos A, Peschos D, Batistatou A, Charalabopoulos K. Genetic models of human cancer as a multistep proess. Paradigm models of colorectal cancer, breast cancer, and chronic myelogenous and acute lymphoblastic leukaemia. J Exp Clin Cancer Res. 2005;24(4):505-14
  19. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA 2003;100(3):776-81 https://doi.org/10.1073/pnas.0334858100
  20. Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2007;36(8):671-9 https://doi.org/10.1016/j.ijom.2007.04.002
  21. Fushs SY, Ougolkov AV, Spiegelman VS, Minamoto T. Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 2005;4(11):1522-39 https://doi.org/10.4161/cc.4.11.2129
  22. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlemeyer E, Jung A, Kirchner T. Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and $\beta$-catenin. Cells Tissue Organs 2005;179:56-65 https://doi.org/10.1159/000084509
  23. Hoppler S, Kavanagh CL. Wnt signaling: variety at the core. J Cell Sci 2007;120:385-93 https://doi.org/10.1242/jcs.03363
  24. Nelson WJ, Nusse R. Convergence of Wnt, $\beta$-catenin, and cadherin pathways. Science 2004;303:1483-87 https://doi.org/10.1126/science.1094291
  25. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83 https://doi.org/10.1038/35000025
  26. Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 2004;117(17):2827-39 https://doi.org/10.1242/jcs.01145
  27. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell boil 2004;6(10):931-40 https://doi.org/10.1038/ncb1173
  28. Hazan RB, Kang L, Whooley BP, Borgen PI. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun 1997;4:399-411 https://doi.org/10.3109/15419069709004457
  29. Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci 2004;1014:155-63 https://doi.org/10.1196/annals.1294.016