Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems

칼슘기 벌크 비정질 합금에서 비정질 형성능 평가

  • Park, Eun-Soo (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Do-Hyang (Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University)
  • 박은수 (서울대학교 재료공학부) ;
  • 김도향 (연세대학교 신소재공학부 준결정 재료연구단)
  • Published : 2009.08.31

Abstract

The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.

Keywords

References

  1. W.H. Zachariasen, J. Am. Chem. Soc. 54 (1932) 3841 https://doi.org/10.1021/ja01349a006
  2. R.M. Martin and G. Lucovsky, Phys. Rev. B 13 (1975) 1381
  3. E.S. Park and D.H. Kim, Met. Mater.-Int. 11 (2005) 19 https://doi.org/10.1007/BF03027480
  4. A. Hurby, Czech. J. Phys. B 22 (1972) 1187
  5. Z.P. Lu and C.T. Liu, Acta Mater. 50 (2002) 3501 https://doi.org/10.1016/S1359-6454(02)00166-0
  6. E.S. Park, W.T. Kim and D.H. Kim, Appl. Phys. Lett. 86 (2005) 061907 https://doi.org/10.1063/1.1862790
  7. K. Amiya and A. Inoue, Mater. Trans. JIM 43 (2002) 81 https://doi.org/10.2320/matertrans.43.81
  8. K. Amiya and A. Inoue, Mater. Trans. JIM 43 (2002) 2578 https://doi.org/10.2320/matertrans.43.2578
  9. E.S. Park and D.H. Kim, J. Mater. Res. 19 (2004) 685 https://doi.org/10.1557/jmr.2004.19.3.685
  10. O.N. Senkov and J.M. Scott, Mater. Lett. 58 (2004) 1375 https://doi.org/10.1016/j.matlet.2003.09.030
  11. E.S. Park and D.H. Kim, Appl. Phys. Lett. 86 (2005) 201912 https://doi.org/10.1063/1.1931832
  12. O.N. Senkov, J.M. Scott and D.B. Miracle, J. Alloys and Comp. 424 (2006) 394 https://doi.org/10.1016/j.jallcom.2006.01.104
  13. O.N. Senkov and J.M. Scott, Scripta Mater. 50 (2004) 449 https://doi.org/10.1016/j.scriptamat.2003.11.004
  14. F.Q. Guo, S.J. Poon, G.J. Ghiflet, Appl. Phys. Lett. 84 (2004) 37 https://doi.org/10.1063/1.1637940
  15. http://mathworld.wolfram.com/RegressionCoefficient.html
  16. I.W. Donald and H.A. Davies, J. Non-Cryst. Solids 30 (1978) 77 https://doi.org/10.1016/0022-3093(78)90058-3
  17. E.S. Park, W.T. Kim and D.H. Kim, Metall. & Mater. Trans. 32A (2001) 200