DOI QR코드

DOI QR Code

비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model

  • 한영원 ;
  • 장승환 (중앙대학교 공과대학 기계공학부) ;
  • 유용문 (자동차부품연구원, 소재공정연구센터) ;
  • 전성식 (국립공주대학교 공과대학 기계자동차공학부)
  • 발행 : 2009.08.31

초록

본 연구에서는 직조섬유복합재료를 이용한 계란판 모양의 시편에 대한 드래이핑 공정과 압축 해석을 비직교성 재료 모델을 이용하여 수행하였다. 비 직교 재료 구성 모델은 Xue 등이 2003년에 발표한 것을 상용 프로그램인 LS-DYNA에서 제공하는 사용자 부프로그램 (user subroutine)을 이용하여 본 연구에 적용하였다. 비 직교 재료 구성 모델에서 빙향성은 변형 기울기 텐서를 이용하여 계산하였고, 각 단계마다 재료 물성 행렬을 갱신하였다. 비 직교 물성 모델은 바이어스 인장 실험 결과와 비교 검증을 한 후에 계란 판 성형에 적용하였다. 계란 판 해석을 위해 본 연구에서는 열 성형 공정 (드래이핑)과 압축 해석을 수행하였다. 압축 해석을 위한 유한요소 모델은 드래이핑 해석으로부터 얻은 유한요소결과를 이용하여 구축하였다.

In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

키워드

참고문헌

  1. 전성식, "통계석 유한요소모델을 이용한 발포된 금속기지 복힘재료의 인장특성," 한국복합재료학회지, 제17 권, 2004, pp. 34-39
  2. Zupan, M., Chen, C. and Fleck, N.A., "The Plastic Collapse and Energy Absorption Capacity of Egg-box Panels," Internalional Journal of Mechanical Sciences, Vol. 45, 2003 , pp. 851-871 https://doi.org/10.1016/S0020-7403(03)00136-X
  3. Deshpande, V.S. and Fleck, N.A "Energy Absorption of an Egg-box Material," Journal of the Mechaniιs and Physics of Solids, Vol.51 , 2003, pp. 187-208 https://doi.org/10.1016/S0022-5096(02)00052-2
  4. Potter, K.D. "The Influence of Accuratε Stretch Data for Reinforcements on the Production of Complex Structural Mouldings: Part 1. Deformation of Aligned Sheets and Fabrics," Composites, Vol. 10, 1979, pp. 161-167 https://doi.org/10.1016/0010-4361(79)90291-X
  5. Pottcr, K.D., "The Influence of Accurate Stretch Data for Reinforcements on the Production of Complex Structural Mouldings," Part 2. Deformation of Random Mats, Composites, Vol. 10, pp. 168-173 https://doi.org/10.1016/0010-4361(79)90292-1
  6. Sharma, S.B. and Sutcliffe, M.P.F. , "A Simplified Finite Element Model for Draping of Woven Material," Composites: Part A, Vol. 35, 2004, pp. 637-643 https://doi.org/10.1016/j.compositesa.2004.02.013
  7. Sharma, S.B, Sutcliffe, M.P.F. and Lnang, S.H., "Charactereisation of Material Properties for Draping of Dry Woven Composite Material," Composiles Part A, Vol. 34, 2003, pp. 1167-1175 https://doi.org/10.1016/j.compositesa.2003.09.001
  8. Prodromou, A.G. and Chen, J., "On the Relationship Betwεen Shcar Angle and Wrinkling of Textilc Composite Preforms," Composites Part A, Vol. 28, 1997, pp. 491-503 https://doi.org/10.1016/S1359-835X(96)00150-9
  9. Robertson, R.E., Hsiue, E.S., Sickafus, E.N. and Yeh, G.S.Y, "Fiber Rearrangemcnts during the Molding of Continuous Fiber Composites. I. Flat Cloth to a Hcmisphere," Polymcr Composiles, Vol. 2, 1981. pp. 126-131 https://doi.org/10.1002/pc.750020309
  10. Rozant, O., Bourban, P.-E. and Manson, J.-A.E., "Drapability of Dry Textile Fabric for Stampablc Thermoplastic Preforms," Composites Part A, Vol. 31 , 2000. pp. 1167-1177 https://doi.org/10.1016/S1359-835X(00)00100-7
  11. Mohammed, U., Lekakou, C., Dong, L. and Bader, M.G., "Shear Deformation and Micromεchanics of Woven Fabrics, Compoposites Part A, Vol. 31 , 2000. pp. 299-308 https://doi.org/10.1016/S1359-835X(99)00081-0
  12. Buet-Gautier, K. and Boisse, P., "Experimental Analysis and ModeIing of Biaxial Mechanical Behavior of Woven Composite Reinforcements," Experimental mechanics, Vol 41, 2001. pp. 260-269 https://doi.org/10.1007/BF02323143
  13. LAunay,J., Hivet, G., Duong. A. V. and Boisse, P., "Experimental AnaIysis of the lnfluencε of Tensions on ln-plane Shear Behavior of Woven Composite Reinforcements," Composites Science and Technology, 68, 2008. pp. 506-515 https://doi.org/10.1016/j.compscitech.2007.06.021
  14. Zhu, B., Yu, T.X. and Tao, X.M., "Large Defornation and Slippage Mechanism of Plain Woven Composite in Bias Extension," Composites Part A, Vol. 38, 2007. pp. 1821-1828 https://doi.org/10.1016/j.compositesa.2007.04.009
  15. Shahkarami, A. and Vaziri, R., "A Continuum Shell Finite Element Model for Impact Simulation of Woven Fabrics," International Journal of lmpact Engineering, Vol. 34, 2007. pp. 104-119 https://doi.org/10.1016/j.ijimpeng.2006.06.010
  16. Yu, W.R., Pourboghrat,, F., Chung, K., Zampaloni, M and Kang, T.J., "Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thennoplastic Composites," Composites Part A, Vol. 33, 2002. pp. 1095-1105 https://doi.org/10.1016/S1359-835X(02)00053-2
  17. Ivanov, l.and Tabiei, A., "Three-dimensional Computational Micro-mechanical Model for Woven Fabric Composites," Composite Structures, Vol. 54, 2001. pp. 489-496 https://doi.org/10.1016/S0263-8223(01)00121-0
  18. Dong, L., Lekakou, C. and Bader, M.G., "Solid-mechanics Finite Element Simulations of the Draping of Fabrics:a Sensitivity Analysis," Composites Part A, Vol. 31 , 2000 pp. 639-652 https://doi.org/10.1016/S1359-835X(00)00046-4
  19. Daniel, I.M., Luo, J.-J. and Schubel, P.M., "Three-dimensional Characterization of Textile Composites," Composites Part B, Vol. 39, 2008. pp. 13-19 https://doi.org/10.1016/j.compositesb.2007.02.002
  20. Hamila, N. and Boisse, P., "A Meso-macro Three Node Finite Element for Draping of Textile Composite Prefonns," Applied composite materials, Vol. 14, 2007. pp. 235-250 https://doi.org/10.1007/s10443-007-9043-1
  21. Xue, P. Peng, X. and Cao, J. "A Non-orthogonal Constitutive Model for Characterizing Woven Composites," Composites Part A, Vol. 34, 2003, pp. 183-193 https://doi.org/10.1016/S1359-835X(02)00052-0
  22. Peng, X.Q. and Cao, J. , "A Continuum Mechanics-based Non-orthogonal Constitutive Model for Woven Composite Fabrics," Composites Part A, Vol. 36, 2005. pp. 859-874 https://doi.org/10.1016/j.compositesa.2004.08.008
  23. Lee, W., Cao, J., Chen, J. and Sherwood, J.A., "Numerical Analysis on Double Dome Stretching Tests of Woven Composites," The 10th ESAFORM Conference, Zaragoza, Spain, 2007. pp. 1052-1057
  24. Chung, J.G., Chang, S.H. and Sutcliffe, M.P.F., "Defonnation and Energy Absorption of Composite Egg-box Panels," Composites Science and Technology, Vol. 67, 2007, pp 2342-2349 https://doi.org/10.1016/j.compscitech.2007.01.020
  25. 강재훈, 장승환,"직물 복합재료의 드레이핑 미소 거동관찰:사진틀 전단실험," 한국복합재료학회지, 제18권, 2005, pp13-19
  26. 김용수, 장승환, "평직 탄소섬유 복합재료-고분자 포움 샌드 위치 구조의 성형중 미소변형에 관한 연구," 한국복합재료학회지, 제17 권, 2004, pp. 28-36
  27. 정지규, 장승환, "직물 복합재료 계란판의 압축특성과 에너지 흡수율," 대한기계학회논문집A, 제30권, 2006, pp. 1603-1610 https://doi.org/10.3795/KSME-A.2006.30.12.1603