DOI QR코드

DOI QR Code

필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구

A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method

  • 김거영 (서울산업대학교 철도전문대학원) ;
  • 구정서 (서울산업대학교 철도전문대학원)
  • 발행 : 2009.08.31

초록

본 논문에서는 복합재 원형튜브의 에너지 흡수 특성을 평가하기 위해 준정적 압괴실험을 시행하였다. 사용된 시편은 필라멘트 와인딩 공법으로 제작된 GFRP(유리섬유/에폭시수지) 원형 튜브이다. 복합재 튜브의 에너지 흡수 특성 분석을 위한 파라미터로서 튜브의 트리거메커니즘, t/D, 섬유배향각 등을 고려하여 그 특성을 비교하였다. 튜브의 형상 측면에서 튜브 직경이 커짐에 따라 delamination에 의한 국부좌굴 발생빈도가 증가하게 되어 불안정한 압괴모드가 발생하는데 이러한 현상은 섬유 배향각을 조정하여 안정적인 압괴모드를 도출할 수 있었다.

In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes which are fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Energy absorption characteristics vary significantly according to the constituent materials, fabrication conditions, tube geometry and test condition. In tube geometry, according as inner diameter increase, unstable crush mode is caused by local buckling of delamination, but control of the fiber orientation should help composite tubes get stable crush mode.

키워드

참고문헌

  1. S. Ochelski, P. Gotowicki, "Experimental asscssment of energy absorption capability of carbon-epoxy and glass-epoxy composites," Composite Structures, Vol. 87, pp. 215-224, 2009 https://doi.org/10.1016/j.compstruct.2008.01.010
  2. X. W. Zhang, H. Su, T. X. Yu, "Energy absorption of an axially crushed square tubε with a buckling initiator," International Journal of Impact Engineering, Vol. 36, pp. 402-417, 2009 https://doi.org/10.1016/j.ijimpeng.2008.02.002
  3. J. Daniel, D. Melo, A. Luiz, S. Silva, J. Edward, N. Villena, "The effect of processing εonditions on the energy absorption capabi1ity of composite tubes," Composite Structures, Vol. 82, pp. 622-628, 2008 https://doi.org/10.1016/j.compstruct.2007.03.001
  4. C. S. Cha, K. S. Lee, .J. O. Chung, H. K. Min, S. B. Pyeon and I. Y. Yang, "Energy absorption characteristics in square or circular shaped aluminum/CFRP compound tubes under axíal compression," International Journal of Automolive Technology, VoL 6, No. 5, pp. 501-506, 2005
  5. M. R. Schultz, "Energy absorption capacity of graphiteepoxy composite tubes," M. D. Thesis, Faculty of the Virginia polytechnic Institute and State University, 1998
  6. Thomton P. H., "The Crush of Fiber-Reinforccd Plastics," Handbook of Ceramics and Composites-Synthesis and Properfies, New York, Vol. 1 p. 307-337, 1990
  7. M. Guden, S. Yu ksel, A. Tas demirci, M. Tanoglu, "Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum!composite hybrid tubes," Composite Structures, VoL 81 , pp. 480-490, 2007 https://doi.org/10.1016/j.compstruct.2006.09.005
  8. J. M. Starbuck, G. C. jacob and S. Simunovic. 2000. "Test Methodologies for Determining Energy Absorbing Mechanisms of Automotive Composite Material Systems," Doc. No. 2000-01-575, Future Car Congress, Crystal City, VA, USA, April 2000
  9. A. G. Mamalis, D. E. Manolakos, G. A. Domosthenous, W. Johnson, "Axial P1astic Collapse of Thin Bi-Material Tubes as Energy Dissipating System," lnt. J. lmpac Eng., Vol 11, No. 2, p. 185-96, 1991 https://doi.org/10.1016/0734-743X(91)90005-Z
  10. C. M. Kindervater, and H. Georgi, "Composite strength and Energy absorption as an aspect of structural crash resistance," Vol 6, pp. 189-235, 1993
  11. 철도차량 안전기준에 관한 지침 (2007), 건설교통부고시 제112007-278호, 2007.7.9
  12. Hong-Wei Song, Xing-Wen Dub, "Off-axis crushing of GFRP tubes," Composites Science and Technology, VoL 62, pp. 2065-2073, 2002l https://doi.org/10.1016/S0266-3538(02)00152-5
  13. A. E Ismail, "Energy absorption of foam-filled steel extrusion undεr quasistatic oblique loading," lnternational Journal of Engineering and Technology, Vol 5, No. 1, pp. 11-24, 2008
  14. Halit Kavia, A. Kaan Toksoy, Mustafa Guden, "Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coeffieient," Materials and Design, Vol. 27, pp. 263-269, 2006 https://doi.org/10.1016/j.matdes.2004.10.024
  15. J. M. Babbage, P. K. Mallick, "Static axial crush performance of unfilled and foam-filled aluminumcomposite hybrid tubes," Composite Sfrucfures, Vol,.70, pp. 177-184, 2005 https://doi.org/10.1016/j.compstruct.2004.08.021
  16. Hong-Wei Song, Zi-Jie Fan b, Gang Yu a, Qing-Chun Wang b, A. Tobota c, "Partìtìon energy absorption of axially cmshed aluminum foam-filled hat sections" International Journal of Solidy and Structures, Vol 42, pp. 2575-2600, 2005 https://doi.org/10.1016/j.ijsolstr.2004.09.050
  17. Hong-Wei Song, Zhi-Min Wan, Zhi-Min Xie, Xing-Wen Du, "Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes," lnternational Journal of lmpact Engineering, Vol. 24, pp. 385-401, 2000 https://doi.org/10.1016/S0734-743X(99)00165-7
  18. Hong-Wei Song, Xing-Wen Du, Gui-Fan Zhao, "Energy absorption behavìor of double-chamfer triggered glass/epoxy circular tubes," Journal of Composite Materials, Vol. 36, No. 18, pp. 2183-2198, 2002 https://doi.org/10.1177/0021998302036018515
  19. Hong-Wei Songa, Xing-Wen Dub, "Off-axìs crushing of GFRP tubes," Composites Science and Technology, Vol 62, pp. 2065-2073, 2002 https://doi.org/10.1016/S0266-3538(02)00152-5
  20. M. A. Jimenez, A. Miravete, E. Larrod e, D. Revuelta, "Etlect of trigger geometry on energy absorptìon in composite profiles," Composite Structures, Vol 48, pp. 107-111 , 2000 https://doi.org/10.1016/S0263-8223(99)00081-1
  21. S. J. Beard, F-K Chang, "Energy absorptìon of braided composite tubes," lnternational Journal of Crashworthiness, Vol. 7, No. 2, pp. 191-206, 2002 https://doi.org/10.1533/cras.2002.0214
  22. N. A. Warrior, T.A. Tumer, E. Cooper, M Ribeaux, "Effects of boundary condìtìons on the energy absorption of thìn-walled polymer composite tubes undεr axial crushing," Thin-Walled Structures, Vol. 46, pp. 905-913, 2008 https://doi.org/10.1016/j.tws.2008.01.023
  23. A. G. Mamalis, D. E. Manolakos, G. A. Domosthenous, W. Johnson, "Axial Plastic Collapse of Thin Bi-Material Tubes as Energy Dissipating System," Int. J. Impac Eng., Vol. 11 , No. 2, p. 185-196, 1991 https://doi.org/10.1016/0734-743X(91)90005-Z
  24. A. F. Hamed, M. M. Hamdan, B. B. Sahari and S. M. Sapuan, "Experimental Characterization of filament wound Glass/epoxy and Carbonlepoxy Composite Materials," Asian Research Publishing Network, Vol. 3, No. 4, 2008