The molecular mechanism of bacterial chemotaxis to environmental pollutants

운동성 세균의 환경오염물질 감지를 위한 주화성 분자 기구

  • Kim, Hye-Eun (Department of Chemical Engineering, Chungnam National University) ;
  • Kato, Junichi (Department of Molecular Biotechnology, Hiroshima University) ;
  • Lee, Sang-Ho (Korea Institute of Industrial Technology (KITECH)) ;
  • Shim, Hyun-Woo (Korea Institute of Science and Technology (KIST)) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Published : 2009.02.28

Abstract

Chemotaxis is the movement of an organism toward chemical attractant and away from chemical repellents. Several bacteria are known to cometabolically degrade some pollutants and attracted to the pollutants. The chemotactic responses to these compounds influence the efficiency of bioremediation because the first precondition of pollutant degradation is definitely confrontation between microorganisms and pollutants. In this review, we summarize present knowledge of about the chemotactic mechanism to environmental pollutants of Pseudomonas species.

일반적으로 운동성세균은 영양분에 대하여 유인반응(정주화성)을 보인다는 것은 100여년의 주화성 연구 역사를 통하여 잘 알려져 있다. 그 중에 일부 환경오염물질을 분해 가능한 운동성 세균은 환경오염물질에 까지 유인반응을 보인다. 이 환경오염물질 감지 기능을 잘 활용한다면 '환경오염원까지 자발적으로 이동하여 그 화학물질을 분해하는 레이더 탑재형 환경정화세균의 개발이 가능할 것이다. 본 고에서는 지금까지 알려진 환경오염물질 감지를 위한 주화성 분자기구를 정리하고 향후 전망을 논하고자 한다.

Keywords

References

  1. Adler, J. (1966), Chemotaxis in bacteria, Science, 153, 708-716 https://doi.org/10.1126/science.153.3737.708
  2. Aguilar, J. M. M., A. M. Ashby, A. J. M. Richards, G. J. Loake, M. D. Watson, and C. H. Shaw (1988), Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of symbiotic nodulation genes, J. Gen. Microbiol. 134, 2741-2746
  3. Ashby, A. M., M. D. Watson, G. J. Loake, and C. H. Shaw (1988), Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants, J. Bacteriol. 170, 4181-4187 https://doi.org/10.1128/jb.170.9.4181-4187.1988
  4. Parke, D., M. Rivelli, and L. N. Omston (1985), Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japoniam and Rhizobium trifolii, J. Bacteriol. 163, 417-422
  5. Parke, D., L. N. Omston, and E. W. Nester (1987), Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens, J. Bacteriol. 169, 5336-5338 https://doi.org/10.1128/jb.169.11.5336-5338.1987
  6. Vardar, G., P. Barbieri, and K. T. Wood (2005), Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward ch10rinated ethenes, Appl. Microbiol. Biotechnol. 66, 696-701 https://doi.org/10.1007/s00253-004-1685-4
  7. Shitashiro, M., J. Kato, T. Fukumura, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake (2003), Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms, J. Biotechnol. 101, 11-18 https://doi.org/10.1016/S0168-1656(02)00285-7
  8. Shitashiro, M., H. Tanaka, C. S. Hong, A. Kuroda, N. Takiguchi, H. Ohtake, and J. Kato (2005), Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa, J. Biosci. Bioeng. 99, 396-402 https://doi.org/10.1263/jbb.99.396
  9. Ohga, T., A. Masduki, J. Kato, and H. Ohtake (1993), Chemotaxis away from thiocyanic and isothiocyanic esters in Pseudomonas aeruginosa, FEMS Microbiol Lett. 113, 63-66 https://doi.org/10.1111/j.1574-6968.1993.tb06488.x
  10. Parales, R. E., J. L. Ditty, and C. S. Harwood (2000), Toluene-degrading Bacteria are chemotactic towards the Environmental pollutants Benzene, Toluene, and Trichloroethylene, Appl. Environ. Microbiol. 66, 4098-4104 https://doi.org/10.1128/AEM.66.9.4098-4104.2000
  11. Grimm, A. C. and C. S. Harwood (1997), alemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene, Appl. Environ. Microbiol. 63, 4111-4115
  12. Grimm, A. C. and C. S. Harwood (1999), NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of Pseudomonas putida to the Aromatic Hydrocarbon Naphthalene, J. Bacteriol. 181, 3310-3316
  13. Harwood, C. S., M. Rivelli, and L. N. Omston (1984), Aromatic acids are chemoattractants for Pseudomonas putida, J. Bacteriol. 160, 622-628
  14. Harwood, C. S., N. N. Nichols, M. K. Kim, J. L. Ditty, and R. E. Parales (1994), Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chernotaxis, biodegradation, and transport of 4-hydroxybenzoate, J. Bacteriol. 176, 6479-6488 https://doi.org/10.1128/jb.176.21.6479-6488.1994
  15. Samanta, S. K. and R. K. Jain (2000), Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphtha1ene and salicylate, Can. J. Microbiol. 46, 1-6 https://doi.org/10.1139/cjm-46-1-1
  16. Hawkins, A. C. and C. S. Harwood (2002), Chemotaxis of Ralstonia eutropha JMPl34 (pJP4) to the Herbicide 2,4-Dichlorophenoxyacetate, Appl. Environ. Microbiol 68, 968-972 https://doi.org/10.1128/AEM.68.2.968-972.2002
  17. Bhushan, B., S. K. Samanta, A. Chauhan, A. K. Chakraborti, and R. K. Jain (2000), Chemotaxis and Biodegradation of 3-Methyl-4-Nitrophelnol by Ralstonlaso. SJ98, Biochem. Biophys. Res. Commun. 275, 129-133 https://doi.org/10.1006/bbrc.2000.3216
  18. Samanta, S. K., B. Bhushan, A. Chauhan, and R. K. Jain (2000), Chemotaxis of a Ralstonia sp. SJ98 toward Different Nitroaromatic Compounds and Their Degradation, Biochem. Biophys. Res. Commun. 269, 117-123 https://doi.org/10.1006/bbrc.2000.2204
  19. Samanta, S. K., O. V. Singh, and R. K. Jain (2002), Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation, Trends Biotechnol. 20, 243-248 https://doi.org/10.1016/S0167-7799(02)01943-1
  20. Marx, R. B. and M. D. Aitken (2000), Bacterial Chemotaxis Enhances Naphthalene Degradation in a HeterogeneollS AqueollS System, Environ. Sci. Technol. 34, 3379-3383 https://doi.org/10.1021/es000904k
  21. Stock, J. B. and M. G. Surette (1996), Escherichia coli and Salmonella, Cellular and Molecular Biology, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter and H. E. Umbarger, 2nd ed. p1103, American Society for Microbiology, Washington, D.C
  22. Stanier, R Y., N. J. Palleroni and M. Doudoroff (1966), The aerobic pseudomonads: a. taxonomic study, J. Gen. Microbiol. 43, 159-271 https://doi.org/10.1099/00221287-43-2-159
  23. Dunn, N. W. and I. C. Gunsalus (1973), Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida, J. Bacteriol. 114, 974-979
  24. Yen, K. M. and I. C. Gunsalus (1982), Iasmid gene organization: Naphthalene/salicylate oxidation, Proc. Natl. Acad .Sci. USA. 79, 874-878 https://doi.org/10.1073/pnas.79.3.874
  25. Omston, L. N. and D. Parke (1976), Properties of an inducible uptake system for beta-keto adipate in Pseudomonas putida, J. Bacteriol. 125, 475-488
  26. Ditty, J. L. and C. S. Harwood (2002), Charged Amino Acids Conserved in the Aromatic Acid/H+ Symporter Family of Permeases Are Required for 4-Hydroxybenzoate Transport by Pcak from Pseudomonas putida, J. Bacteriol. 184, 1444-1448 https://doi.org/10.1128/JB.184.5.1444-1448.2002
  27. Wu, H., J. Kato, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake (2000), Identification and Characterization of Two Chemotactic Transducers for Inorganic Phosphate in Pseudomonas aeruginosa 182, 3400-3404
  28. Armitage, J. P. (1993) Signal transduction, J. Kurjan & B. L. Taylor, p43, Academic Press, San Diego
  29. Kuroda, A., T. Kumano, K. Taguchi, T. Nikata, J. Kato, and H. Ohtake (1995), Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa, J. Bacteriol. 177, 7019-7025 https://doi.org/10.1128/jb.177.24.7019-7025.1995
  30. Taguchi, K., H. Fukutomi, A. Kuroda, J. Kato, and H. Ohtake (1997), Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa, Microbiology, 143, 3223-3229 https://doi.org/10.1099/00221287-143-10-3223
  31. Moulton, R. C. and T. C. Montie (1979), Chemotaxis by Pseudomonas aeruginosa, J. Bacteriol. 137, 274-280
  32. Moench, T. T. and W. A Konetzka (1978), Clemotaxis in Pseudomonas aeruginosa, J. Bacteriol. 133, 427-429
  33. Kato, J., A. Ito, T. Nikata, and H. Ohtake (1992), Phosphate taxis in Pseudomonas aeruginosa, J. Bacteriol. 174, 5149-5151 https://doi.org/10.1128/jb.174.15.5149-5151.1992
  34. Stove, C. K , X. O. Pham, A L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K.-S. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. W. Hancock, S. Lory, and M. V. Olson (2000), Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen, Nature, 406, 959-964 https://doi.org/10.1038/35023079
  35. Hong, C. S., M. Shitashiro, A. Kuroda, T. Ikeda, N. Takiguchi, H. Ohtake, and J. Kato (2004), Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa, FEMS Microbiol. Lett 231, 247-252 https://doi.org/10.1016/S0378-1097(04)00009-6
  36. Kato, J., T. Nakamura, A. Kuroda, and H. Ohtake (1999) Cloning and Characterization of Chemotaxis Genes in Pseudomonas aeruginosa, Biosci. Biotechnol. Biochem. 63, 155-161 https://doi.org/10.1271/bbb.63.155
  37. Masduki, A., J. Nakamura, T. Ohga, R. Umezaki, J. Kato, and H. Ohtake (1995), solation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa, J. Bacteriol. 177, 948-952
  38. Darzins, A (1994), Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biogenesis and twitching motility: sequence similarity to the chemotaxis genes of the gli이ng bacterium Alyxococcus xanthus, Mol. Microbiol. 11, 137-153 https://doi.org/10.1111/j.1365-2958.1994.tb00296.x
  39. Mao, H., P. S. Cremer, and M. D. Manson (2003), A sensitive, versatile microfluidic assay for bacterial chemotaxis, Proc. Natl. Acad .Sci. USA. 100, 5449-5454 https://doi.org/10.1073/pnas.0931258100
  40. Nikata, T., K. Sumida, J. Kato, and H. Ohtake (1992), Rapid Method for Analyzing Bacterial Behavioral Responses to Chemical Stimuli, Appl Environ. Microbiol. 58, 2250-2254
  41. Kim, H. E., M. Shitashiro, A. Kuroda, N. Takiguchi, H. Ohtake, and J. Kato (2006), Identification and Characterization of the Chemotactic Transducer in Pseudomonas aeruginosa PAOl for Positive αlemotaxis to Trichloroethylene, J. Bacteriol. 188, 6700-6702 https://doi.org/10.1128/JB.00584-06