Selection and Mechanism of Anti-Obesity Agents from Natural Products Based on Anti-Angiogenesis

신생혈관형성억제작용을 기반으로 한 항비만제제의 선별 및 작용기전

  • Shin, Jin-Hyuk (Department of Biotechnology, Chonnam National University) ;
  • Lee, Jin-Hee (Dept. of Culture Biotechnology, Chonnam National University) ;
  • Kang, Kyeong-Wan (Dept. of Culture Biotechnology, Chonnam National University) ;
  • Hwang, Jae-Ho (Dept. of Culture Biotechnology, Chonnam National University) ;
  • Han, Kyeong-Ho (Dept. of Culture Biotechnology, Chonnam National University) ;
  • Shin, Tai-Sun (Food Science and Nutrition, Chonnam National University) ;
  • Kim, Min-Yong (Dept, of Refrigeration Eng., Chonnam National University) ;
  • Kim, Jong-Deog (Department of Biotechnology, Chonnam National University)
  • 신진혁 (전남대학교 생명화학공학부 생명산업공학과) ;
  • 이진희 (전남대학교 해양기술학부) ;
  • 강경완 (전남대학교 해양기술학부) ;
  • 황재호 (전남대학교 해양기술학부) ;
  • 한경호 (전남대학교 해양기술학부) ;
  • 신태선 (전남대학교 영양식품학) ;
  • 김민용 (전남대학교 냉동공학과) ;
  • 김종덕 (전남대학교 생명화학공학부 생명산업공학과)
  • Published : 2009.04.29

Abstract

Anti-angiogenic mechanism was examined for anti-obesity agents with the extract of P.radix, P.semen, S.hebra and C.furctus through anti-cell adhesion effect and western blot. Cell adhesion molecules, VCAM-1 was supressed with the order of P.radix (0.2 ppm, 125%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 114%) > C. furctus (5.0 ppm, 111.8%), ICAM-1 was inhibited by P.radix (0.25 ppm, 130%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 138%) > C. furctus (5.0 ppm, 66.7%), E-Selectin was also supressed P.radix (0.25 ppm, 100%) > P.semen (1.0 ppm, 128%) > S.hebra (5.0 ppm, 120%) > C. furctus (5.0 ppm, 100.7%). And signal molecules, VE-cadherin was supressed by P.radix and S.hebra, ${\beta}$-catenin was inhibited by P.radix, and Akt was supressed all these 4 kinds of natural products. These P.radix, P.semen, S.hebra and C.furctus were showed the possibility of anti-obesity agents based on anti-angiogenesis.

선별한 신생혈관형성억제제는 EGCG보다도 제어 효과가 나은 천연산물들 중에서 전호, 파고지, 희첨 및 중심으로 그 기전을 밝히고자 하였다. 세포독성은 전호는 0.3 ppm에서 약간의 독성을 나타내었고, 파고지는 10 ppm까지는 독성을 나타내지 않았으며, 희첨 및 산수유는 25 ppm까지 독성을 나타내지 않았다. 세포부착억제작용은 신생혈관의 형성에 중요한 역할을 하기 때문에 cell adhesion 분자인 VCAM-1, ICAM-1 및 E-selectin들에 대하여 ELISA 법으로 살펴보았다. VCAM-1에 대한 천연산물의 작용은 전호 (0.2 ppm, 125%)>파고지 (0.5 ppm, 100%)>희첨 (5.0 ppm, 114%)> 산수유 (5.0 ppm, 111.8%)의 순으로 저해의 강도가 높으며, ICAM-1은 전호 (0.25 ppm, 130%)>파고지 (0.5 ppm, 100%)>희첨 (5.0 ppm, 138%)>산수유 (5.0 ppm, 66.7%)의 순으로 저해되는 것으로 나타났고, 그리고 E-Selectin은 전호 (0.25 ppm, 100%)> 파고지 (1.0 ppm, 128%)>희첨 (5.0 ppm, 120%)>산수유 (5.0 ppm, 100.7%)의 순으로 저해되는 것으로 나타났다. Western blot으로부터, 전호 추출물은 VE-cadherin과 ${\beta}$-catenin의 신호전달을 억제하였으며, 그 하위 신호 전달분자인 Akt도 억제하는 것으로 나타났고, 파고지는 ${\beta}$-catenin의 신호는 억제하지 않는 것으로 보이나, 그 하위그룹의 Akt의 신호전달을 억제하는 것으로 나타났다. 그리고, 희첨은 VE-Cadherin과 하위 그룹의 Akt를 농도의 증가에 따라 확실한 제어를 보이고 있음을 알 수 있었고, 산수유는 하위그룹의 Akt의 신호전달을 억제하는 것으로 나타났다. 4종류의 선택된 천연산물은 세포표면의 신호전달분자 그리고 그 하위 그룹의 Akt를 억제함으로써 NF-kB의 활성을 차단함으로써 신생혈관의 형성을 억제하는 것으로 판단된다. 따라서 4종류의 천연산물 전호, 파고지, 희첨 및 산수유는 전반적으로 낮은 농도에서 세포부착인자의 발현을 억제하였고, 신호전달 분자들을 억제함으로써 신생혈관 형성 억제에 따른 항비만제제로서 충분한 가능성을 보였다.

Keywords

References

  1. Ruth E. Lcy, Fredrik Backhed, Peter Tumbaugh, Catherine A. Lozupone, Robin D. Knight, and Jeffrey I. Gordon (2005), Obesity alters gut microbíal ecology, PNAS., 102(31), 11070-11075 https://doi.org/10.1073/pnas.0504978102
  2. Garrow, J. S. (1988), Obesity and related diseases. Edinburgh, Churchill Liviingstone
  3. World Health organization (1997), Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity, 3-5
  4. Flegal, K. M., M. D. Carroll, C. L. Ogden, and C. L. Johnson (2002), Prcvalence and trends in obesity among US adults, 1999-2000. JAMA. 288, 1723-1727 https://doi.org/10.1001/jama.288.14.1723
  5. Allison, D. B., K. R. Fontaine, J. E. Manson, J. Stevens, and T. B. Vanltallie (1999), Annual Deaths Attributable to Obesity in the United States. JAMA. 282, 1530-1538 https://doi.org/10.1001/jama.282.16.1530
  6. Bray, G. A. (2001), Drug treatment of obesity. Rev. Endocr. Metad. Disord. 2, 403-418 https://doi.org/10.1023/A:1011808701117
  7. Yamanaka, M., T. Nomura, and M. Kametaka (1977), Influence of intestinal microbes on heat production in germ-free, gnotobiotic and conventional mice, J. Nutr. Sci. Vitaminol. 23, 221-229 https://doi.org/10.3177/jnsv.23.221
  8. Folkman, J. R. Cotran (1976), Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Path. 16, 207-248
  9. Folkman, J., M. Klagsbrun (1987), Agiogenic factors. Science 235, 442-447 https://doi.org/10.1126/science.2432664
  10. Fox, S. B., K. C. Gatter, and A. L. Harris (1996), Tumor angiogenesis. J. Pathol. 179, 232-237
  11. Leung, D. W., G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara (1989), Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, l306-l309 https://doi.org/10.1126/science.2479986
  12. Ferrara, N. and T. Davis-Smyth (1997), The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4-25 https://doi.org/10.1210/er.18.1.4
  13. Crandall, D. L., G. J. Hausman, and J. G. Karl (1997), A review oh the rnicrocirculation of adipose tissue anatomic, metabolic, and angiogenic perspectives. Microcirculation 4, 211-232 https://doi.org/10.3109/10739689709146786
  14. Poissonnet, C. M., A. R. Burdi, and F. L. Bookstein (1983), Growth and development of human adipose tissue during early gestation. Early Hum. Dev. 8, 1-11 https://doi.org/10.1016/0378-3782(83)90028-2
  15. Friedman, J. M., R. L. Leibel, D. S. Siegel, J. Walsh, and N. Bahary (1991), Molecular mapping of the mouse ob mutation. Genomics. 11, 1054-1062 https://doi.org/10.1016/0888-7543(91)90032-A
  16. Halaas, J. L., C. Boozer, J. Blair-west, N. Fidahusein, D. A. Denton, and J. M. Fridman (1997), Proc Nat'l Acad Sci U.S.A. 94, 8878-8883 https://doi.org/10.1073/pnas.94.16.8878
  17. Cohen, B., D. Barkan, and Y. Levy (2001), Leptin induces angiopoietin-2 expression in adipose tissue. J. Biol. Chem. 276, 7697-7700 https://doi.org/10.1074/jbc.C000634200
  18. Rupnick, M. A., D. Panigraphy, and C. Y. Zhang (2002), Adipose tissue mass can be regulated thorough the vasculature. Proc Nat'l Acad Sci. U.S.A. 99, 10730-10735 https://doi.org/10.1073/pnas.162349799
  19. Nishimura, S., I. Manabe, M. Nagasaki, Y. Hosoya, H. Yamashita, H. Fujita, M. Ohsugi, K. Tobe, T. Kadowaki, R. Nagai, and S. Sugiura (2007), Adipogenesis in Obesity Requires Close Interplay Between Differentiating Adipocytes, Stromal Cells, and Blood Vessels, DIABETES, 56, 1517-1526 https://doi.org/10.2337/db06-1749
  20. KIM, J. D., L. Liu, W. Guo, and M. Meydani (2006), Chemical structure of flavonolsids in relation to modulation of angiogenesis and immune-endothelial cell adhesion, J. Nutrition. Biochem. 17, 165-176 https://doi.org/10.1016/j.jnutbio.2005.06.006
  21. LIM, J. K., H. J. SEO, E. O. KIM, M. Meydani, and J. D. KlM (2006), Identification of Anti-angiogenic and Anti-cell adhesion Materials from Enterobacteria of the Trachurus japonicus, J. Microbiol. Biotech. 16, 1544-1553
  22. Banks, R. E., A. J. H. Gearing, I. K. Hemingway, D. R. Norfolk, T. J. Perren, and P. J. Selby (1993), Circulating intercellular adhesion molecule-1(ICAM-1), E-selectin and vascular cell adhesion molecule-1(VCAM-1) in human malignancies. Br. J. Cancer 68, 122-124
  23. Hyodo, I., K. Jinno, M. Tanimizu, Y. Hosokawa, Y. Nishikawa, M. Akiyama, K. Mandai, and S. Moriwaki (1993), Detection of circulating intercellular adhesion molecule-1 in hepatocellular carcinoma. Int. J. Cancer 55, 775-779 https://doi.org/10.1002/ijc.2910550514
  24. SONG, M. G., H. J. SEO, J. H. Moon, K. H. Park, and J. D. KlM (2007), Anti-angiogenic and Anti-cell Adhesion Effects and Their Mechanism with the Extract of Camella jaonia leaf, Korean Journal of Biotechnology and Bioprocess Engineering 22, 249-254
  25. HEO, I. D., H. J. SEO, and J. D. KIM (2007), Anti-Angiogenic and Anti-Cell Adhesion Effect of the Camellia japonica Flower Extract, Joumal of Life Science 17, 1152-1156 https://doi.org/10.5352/JLS.2007.17.8.1152