순시 이득을 이용한 적응잡음제거기 구현

Implementation of Adaptive Noise Canceller with Instantaneous Gain

  • 이재균 (대구대학교 정보통신공학과) ;
  • 김춘식 (대구대학교 정보통신공학과) ;
  • 이채욱 (대구대학교 정보통신공학과)
  • 발행 : 2009.08.31

초록

LMS알고리즘은 잡음이 섞인 신호로부터 원 신호를 복원하는데 자주 사용된다. 이 LMS알고리즘의 주된 결점은 음성 신호 파워에 따라 선형적으로 EMSE(Excess Mean Square Error)가 증가한다. 그 결과 최적의 값에서 큰 EMSE 때문에 성능의 효율성이 떨어진다. 이러한 결점은 적은 스텝사이즈를 선택함으로서 해결 할 수 있지만, 수렴율이 늦어지는 단점이 있어, 빠른 수렴율과 낮은 EMSE를 동시에 만족할 수 있는 값이 필요하다. 본 논문에서는 IGC(lnstantaneous Gain Control) 알고리즘을 음성신호가 존재하는 경우에서 제안한다. 시뮬레이션은 음성신호와 가우시안 잡음을 이용하여 수행하였고, 수렴율, 잡음제거, 그리고 EMSE에서 LMS알고리즘보다 IGC알고리즘이 우수하다는 것을 보인다.

The Least Mean Square (LMS) algorithm is often used to restore signal corrupted by additive noise. A major defect of this algorithm is that the excess Mean Square Error (EMSE) increases linearly according to speech signal power. This result reduces the efficiency of performance significantly due to the large EMSE around the optimum value. Choosing a small step size solves this defect but causes a slow rate of convergence. The step size must be optimized to satisfy a fast rate of convergence and minimize EMSE. In this paper, the Instantaneous Gain Control (IGC) algorithm is proposed to deal with the situation as it exists in speech signals. Simulations were carried out using a real speech signal combined with Gaussian white noise. Results demonstrate the superiority of the proposed IGC algorithm over the LMS algorithm in rate of convergence, noise reduction and EMSE.

키워드

참고문헌

  1. Greenberg, J. E., Modified LMS algorithms for speech processing with an adaptive noise canceller, IEEE Trans. Speech Audio Processing, Vol.6, No.4, pp.338-351, 1998 https://doi.org/10.1109/89.701363
  2. Haykin, S., Adaptive Filter Theory, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2002
  3. Harrison, W. A., J. S. Lim and E. Singer, A new application of adaptive noise cancellation, IEEE Trans. Acoustics, Speech, Signal Processing, Vol.34, No.1, pp.21-27, 1986 https://doi.org/10.1109/TASSP.1986.1164777
  4. Ikeda, S. and A. Sugiyama, An adaptive noise canceller with low signal distortion for speech codecs, IEEE Trans. Signal Processing, Vol.47, No.3, pp.665-674, 1999 https://doi.org/10.1109/78.747774
  5. Widrow, B., et al., Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter, Proc. IEEE, Vol.64, No.8, pp.1151-1162, 1976 https://doi.org/10.1109/PROC.1976.10286
  6. Hongyan, C., S. Chongfei, X. Xiaobo, H. Yong and K. D. Luk, Study on Adaptive Noise canceller on Fixed-Point Algorithm for Real-Time Somatosensory Evoked Potential Monitoring, ICBBE 2008, pp.3274-3277, 2008
  7. Widrow, Bernard and Samuel D. Srearns, Adaptive signal processing, Englewood Cli ${\circledR}$s, NJ:Prentice Hall,1985
  8. Boll, S. F. and D. C. Pulsipher, Suppression of acoustic noise in speech using two microphone adaptive noise cancellation, IEEE Trans. Acoust., Speech, Signal Processing, Vol.ASSP-28, No.6, 1980
  9. Kim, Dai I. and P. De Wild, Performance analysis of the DCT-LMS adaptive filtering algorithm, Signal Processing, Vol.80, No.8, pp.1629-1654, 2000 https://doi.org/10.1016/S0165-1684(00)00098-0
  10. Widrow, B., et al., Adaptive noise canceling: principles and applications, Proc. IEEE, Vol.63, pp.1692-1762, 1975 https://doi.org/10.1109/PROC.1975.10036
  11. Wallace, R. B. and R. A. Goubran, Improved tracking adaptive noise canceller for nonstationary environments, IEEE Trans. Signal Processing, Vol.40, No.30, pp.700-703, 1992 https://doi.org/10.1109/78.120817
  12. Ho, K. C., A minimum misadjustment adaptive FIR filter, IEEE Trans. Signal Processing, Vol.44, No.3, pp.577-585, 1996 https://doi.org/10.1109/78.489031
  13. Maxwell, J. A. and P. M. Zurek, Reducing acoustic feedback in hearing aids, IEEE Trans. Speech Audio Processing, Vol.3, No.4, pp.304- 313, 1995 https://doi.org/10.1109/89.397095
  14. Al-Saleh, M. A., Fast tracking two stage adaptive noise canceller, IEEE Region 10 Conference TENCON, pp.606-609, 2004
  15. Anrikulu, O. and A. G. Constantinides, The LMS algorithm with time-varying forgetting factor for adaptive system identification in additive output noise, ICASSP 96, pp.1851- 1854, 1996
  16. Delgado, R. E., O. Ozadmar, S. Rahman and C. N. Lopez, Adaptive noise cancellation in a multimicrophone system for distortion product otoacoustic emission acquisition, IEEE Trans. Biomedical Engineering, Vol.47, No.9, pp.1154-1164, 2000 https://doi.org/10.1109/10.867919
  17. Kim, Joonwan and A. D. Poularikas, Comparison of two proposed methods in adaptive noise canceling, IEEE SSST 2003, pp.400-403, 2003
  18. Liavas, A. P. and D. Tsipouridou, On the performance of the Mismatched MMSE and the LS Linear Equalizers, IEEE Trans. Acoustics, Speech, Signal Processing, Vol.55, No.7, pp.3302-3311, 2007 https://doi.org/10.1109/TSP.2007.894392