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Abstract 1n this study, we analyze the mean waiting time on the nested open queueing network,
where the population within each subnetwork is controlled by a semaphore queue. The queueing
network can be transformed into a simpler queueing network in terms of customers waiting time. A
major characteristic of this model is that the lower layer flow is halted by the state of higher layer.
Since this type of queueing network does not have exact solutions for performance measure, the lower
bound and upper bound on the mean waiting time are checked by comparing them with the mean
waiting time in the transformed nested queueing network. Simulation estimates are obtained assuming
Poisson arrivals and other phase-type arrival process, ie., Erlang and hyper-exponential distributions.
The bounds obtained can be applied to get more close approximation using the suitable approach.
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The number of customers in each subnetwork is

In a typical queueing network, a customer may
have traverse several layers of flow controlled
mechanisms before it comes out from the network.
In this paper, we present a model for analyzing the
delays introduced by such nested flow mechanism.
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controlled by a semaphore queue. Communication
network protocols are designed a layered structure
along the line of the OSI model. A common means
of implementing the reguired sequencing, pacing,
congestion control, and data integrity functions of
protocol layer is a multiple window mechanism, say
a sliding window mechanism. As it were, the
window mechanism is a means for regulating the
flow of active customers through the service nodes
in distributed networks. This mechanism is widely
applied in data transmission network, as it is the
standard level 2 data link flow control,
level 3 end-to-end flow control. Even if the remote

and for

process call and the buffer management schemes



240 AR et =FR 0 A5 2D o]& A B B A 4 T(0098)

are conventionally encountered and well modeled as
the window mechanism. The window mechanism
has been extensively studied, especially in the con-
text of communication networks. The performance
of the mechanism under the nominal operation, and
in the presence of stress conditions such as trans-
mission errors or loss or delay of frames are well
understood.

Reiser [1] modeled a computer communication
system consisting of many virtual routes with
end-to—end window flow control, as a closed multi-
chain queueing network under the assumption of a
loss system. Pennotti and Schwartz [2] and Sch-
wartz [3] analyzed a virtual route as a closed
tandem queueing network under the same assump-—
tion. Reiser [1] observed that in a real situations,
packets that arrives to find a full window are not
lost, but are queued in an input queue. Reiser {1]
and Thomasian and Bay [4], use a flow equivalent
server technique to model the sliding window link
as a single server queue with state dependent
service rate. In this approach, the effect of delays
due to all sequence numbers in use is accounted
for in the delivery service time of the equivalent
server. Varghee, Chou and Nilsson [5] and Gihr
and Kuehn [6], presented a similar approach to the
above. Varghee, Chou and Nilsson [5] analyzed an
open queueing network without an acknowledgment
delay using the approximation method. Gihr and
Kuehn [6] obtained the characteristics of the phy-
sical transmission process using hierarchical decom-
position and aggregation methods. Rhee and Perros
[7]1 modeled an open tandem queueing network with
population constraint and constant service times.
The total number of customers that may be pre-
sented in the network can not exceed a given value
k. Customers arriving at the queueing network
when there are more than k customers are forced
to wait in an external queue. The arrival process
to the queueing network is assumed to be arbitrary.

For an analysis of nested layered communication
network, the communication functions are partitioned
into a vertical set of layers. Each layer performs a
related subset of the functions required to com-
municate with another system. It relies on the next

lower layer to perform more primitive functions and

to conceal the details of those functions. It provides
services to next higher layer. Mitchell and Lide (8]
presented a general framework to model sliding
window flow control from the closed queueing net-
work models. Fdida, Perros and Wilk [9] presented
a methodology for analyzing nested and tandem
configurations of sliding window controlled networks.
Each layer of sliding window control is reduced to
a state dependent infinite server queue without
acknowledgment using a flow-equivalence metho-
dology. A single-hop OSI structured network with
multiple layers of sliding window flow control and
packet fragmentation between layers is analyzed by
Shapiro and Perros [10]. They presented a hierar-
chical method to analyze nested sliding window flow
controlled layers. Each layer with sliding window
control is reduced to a single queue with state de-
pendent service rate.

In this paper, we present a nested open tandem
queueing network controlled by semaphore queue.
This type of queueing networks have application in
diverse area, such as pallet based production sys-
tem, computer sharing and multiprogramming sys-
tems, communication network model and semaphore
controlled software in an operating system. A
major characteristic of this model is that the lower
layer flow is halted by the state of higher layer.
Rhee and Perros [11] analyzed a mean waiting time
of an open tandem queueing network with popu-
lation constraint assuming constant service times. 2
node queueing network which is equivalent to the
original queueing network as far as a customer’s
waiting time is concerned, is obtained. Rhee {12]
presented some properties that the inter-change of
nodes does not make any difference to customer’'s
waiting time in the nested queueing network under
a certain condition. Using those properties, the dra-
matic reduction of network dimensionality is exe-
cuted. It is also generalized that the reduction of
network dimensionality can be extended to an n-
layer open queueing network with population con-
straint and constant service times. This paper is a
sequel to earlier two papers by Rhee and Perros
[11] and Rhee [12].

This paper is organized as followed: Section 2

presents the model for a nested queueing network
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with semaphore queue. In section 3, some charac—
feristics of a semaphore controlled queueing net-
work are presented to analyze the customer’'s
waiting time. In section 4, we demonstrate its value
by comparing it against simulation estimates. Finally,
the conclusion is presented at section 5.

We note that throughout this paper, we interpret
the waiting time of a customer as the total time a
customer waits in the queueing network, rather than
the total time it takes to traverse the queueing
network which also includes service times.

2. A nested queueing network under study

Let us consider a nested open tandem queueing
network with population constraint and constant
service times as shown in Figure 1. The population
constraint of the queueing network is controlled by
a semaphore. For presentation purposes, we shall
refer to the outside network as the high layer, and
also refer to the network with purely nested as the
low laver. We assume that the gqueueing network
consists of n nodes for the low layer, m nodes for
the high layer respectively. The arrival process to
the queueing network is assumed to be an arbi-
trary general distribution with a rate A. The sema-
phore mechanism consists of a pool of & tokens
and an internal queue, £ for the low layer, and a
pool of k, tokens and an external queue, E, for the
high layer.

An arriving customer takes a token from the
token pool, £, to enter the high layer queueing
network. The customer holds the token until it
leaves the high layer queueing network. The cus—
tomer proceeds to the high layer queueing network
until £, In order to enter the low layer queueing
network, the customer needs another token from
the low layer token pool, ;. The customer is then

subjected to the low layer window flow control.

Upon service completion in the low layer queueing
network, the customer returns its token immediately
to A and proceeds to the rest of the node of the

high layer queueing network. Again upon service
completion in the high layer queueing network, the
token is returned to F, in zero time. Customers

that arrive during the time when the corresponding
token pool is empty, are forced to wait in either &
or K, The first arriving customer in the external
queue, enters the queueing network as soon as a
token is returned to its corresponding token pool.

Let us rearrange the low layered open queueing
network into an open queueing network where the
node with the longest service time is placed at the
beginning of the queueing network. A customer’s
waiting time in either queueing network is the
same [7]. Since there is no queue after the first
node, the time a customer spends in the remaining
nodes is the sum of the service times. In view of
this, we can represent the queueing network in
Figure 1 by a simpler 2 node queueing network as
shown in Figure 2.

For presentation purposes we shall refer to these
two nodes as the first node and the second node.
s represents the longest service time in the net-
work and 5 is the sum of the remaining service
times. The number of parallel servers at the second
node is infinite. A customer’s waiting time in the
two-node queueing network is the same as in the
low layered queueing network. The procedures of

reducing the network dimensionality are stated for

~ ® L.
— 1| |
®

k
Figure 2 two node queueing network

|

Figure 1 A nested queueing network
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Figure 3 node queueing network

the nested queueing network under in Figure 1. By
applying Proposition 1, 2 and 3 [12], a simple and
equivalent queueing network can be generated as
far as a customer’s waiting time is eoncerned. Let~
ting 8—1 and ;2 be the sum of the remaining ser-
vice time in each layer, the nested queueing net-
work can be transformed into only 3 node queueing
network as shown in Figure 3.

One of the main issues in the semaphore con-
trolled queueing network is how to organize the
number of tokens. That is, the number of tokens in
the network, ie., the size of the window, may
influence where customers wait internally in the
network.

However, a customer’'s waiting time in the net-
work is independent of the number of tokens in the
low layer network, when k;s*> T}, where T] is the
sum of service times in the high layered queueing
network. And, the number of tokens in the high
layer queueing network has no influence on the
customer’s waiting time, when k-zs* =17, where 1
is the sum of service time in the whole nested
queueing network. Although the above described
model has only two layers in the queueing net-
work, the reduction of network dimensionality can
be extended to an 7n layered open queueing net—
work with population constraint and constant ser—
vice times. It is evident that in order to be able to
tackle any number of multi-layers of window flow
control we need to be able to construct a simpler

queueing network.

3. Some basic characteristics

In this section, we present a lower and an upper
bound of the mean waiting time in the queueing
network assuming that ks <7, where 7= s+,

in Figure 2. And we show that these are true

bounds. In the case where the token pool consists
of one token, since the network allows only one
customer, there is no waiting after the external
queue. 2 node queueing network becomes GI/D/1
queue with a service time equal to 7. The subject
for the mean waiting time on GI/D/l is not
considered in this paper, but quoted to its previous
well-known researches. If the arrival process to the
queueing network is Poisson, then we obtain an
M/D/1 queue, and the mean waiting time, W is
given by Khinchin-Pollaczek formula, i.e.,
T
weiﬁga» )
where p=AT is traffic intensity. However, for the
GI/G/1 queue, there is no exact expression avai-
lable for the mean waiting time. Marshall [13] and
Marchal [14] give the following bounds for the
GI/G/1.
Noh+p(p—2) Mo +05)
“‘“{ ’W]S V=T0ms

where ¢% and 0% are the variances of the inter-

2)

arrival distribution and service time distribution
respectively. For the case of the constant service
time, the variance OJB is zero. Therefore, the lower
bound is always zero since p<1. Marchal [14]
obtained the following approximation for the lower
bound of the mean waiting time in a GI/G/1
queue,

(& +ah) 1+p

22(1—p) 21

Further, the mean waiting time in a GI/D/1 queue

(3)

can be approximated by the following expression
due to Kramer and Langenbach-Belz [15];
2
pFld+d)
= mg(é,ém) (4)

where & and c§ are the squared coefficient of vari-

ation of the interarrival time and service times

respectively, and

(1-a) ,
Q(Civczvl))= exp(—Q(l—P)(W» if C’,zl <1
(1-&)7 ,
exp(—(1— p)w) otherwise

3.1 A Lower Bound
Let us consider the equivalent queueing network
shown in Figure 2. We note that tokens are used
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in the order in which they arrive at the token pool.
For presentation purpose, let us number the tokens
from 1 to k. Then, since service times are all
constant, token ¢ will always be behind token
(i—1). In view of this, every k,, arriving customer
will use the same token. If we regard each token
as a separate server, then the queueing network
can be represented by %k queues in parallel. Each
queue will consist of customers waiting to use the
same token. The service time at each queue is the
time it takes for a token to traverse the two nodes
inside the semaphore controlled queueing network.
Obviously, this service time depends on how many
other tokens are being used at the same time. In
other words, the service time in a queue depends
on the state of the remaining (k—1) queues.

A lower bound on the mean waiting time can be
easily obtained by setting the service time of each
of these k queues equal to 7', ie., independent of
the state of the other queues. If the arrival process
to the original queueing network is a general
arrival process with arrival rate A, then the arrival
process to each of the k¥ queues is the convolution

of k such general arrival processes each with an arr-
. A
ival rate T Thus, each queue can be analyzed as a

GIRGI® - ®GI/D/1 queue, where GIRGI® - QGI
is the convolution of the k arrival processes, and
the service time is equal to Z. When the arrival
process to the queueing network is Poisson with an
arrival rate A, the arrival process to each queue
becomes an Erlang distribution with % phases and
an arrival rate A for each phase. For Poisson and
non-Poisson arrivals, the mean waiting time is
calculated using (2) or (4).

3.2 An Upper Bound

Let us consider the queueing network under study
assuming that the external queue is saturated. That
is, there is always at least one customer waiting in
the external queue. In this case, all k tokens are

continuously used. Let us consider the case where
?> s'. Since the external queue is always satu-

rated, sooner or later there will be no token left in
the token pool. The interdeparture time from the

first node is larger than or equal to S*, which
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means that the interarrival time of a token to the
pool is larger than or equal to s Thus, a token
arriving to the first node always finds the node
empty. The time it takes for a token to return to
T=s"+3s

the token pool is and the average

. T
departure time for customer is ——. Thus, when the

k
. .k
external queue is saturated, the throughput is T
We conjecture from this, that the throughput of 2
1 k
node queueing network lies between — and T
S

Therefore, an upper bound on the mean waiting

time can be obtained by representing a GI/D/1

B * T
queue with a service time equal to max{s ’f}'

The mean waiting time in this queue can be obtained
using (1) if the arrival process is Poisson. For a
non-Poisson arrival process, we use (2) or (4).

The above lower and upper bounds are true
bounds is shown for the mean waiting time in the

2 node queueing network [11].

4. Numerical examples

The lower bound and upper bound given in
section 3, were checked by comparing them with
the mean waiting time in 3 node nested gueueing
network.

A lower bound on the mean waiting time can be
obtained by removing the level 1 semaphore queue.
One way of removing the level semaphore queue is

to set k; to k,. Then, the customer never experi-

ences queueing in the internal queue £ . Let

s=T-s", the lower bound on the mean waiting
time is shown in Figure 4.
Obviously an upper bound on the mean waiting

time also can be obtained by removing the level
£ ®
— T
% @

Ky

:

Figure 4 A lower bound of the nested queueing
network



244 PRI =EA:

; ®
: ®

A

;

Figure 5 An upper bound of the nested queueing
network

semaphore queue. If we set k to k, then the
queueing network provides an upper bound on the
This

never experience any queueing in the internal queue

mean waiting time. is because customers

E in the 3 node queueing network. the upper

bound on the mean waiting time is shown in
Figure 5. .

Simulation estimates were obtained assuming
Poisson arrivals and phase-type arrival process
such as Erlang and hyper-exponential distributions.
This is because the coefficient of variation can be
controlled variously in the phase-type arrival pro-

cess. And it is well known that the mean waiting

Al=dl 2 o]lE Al 6 A A 4 (20008

time in a queue depends on the coefficient of
variation its arrival process.

For each example below, the table 1 through 3
give the lower and upper bounds and the simulated
mean waiting time as a function of k;, the number
of tokens in the level 2 layer, assuming that k is
fixed. And, table 4 through 6 show the lower and
upper bounds and the simulated mean waiting time
as a function of k;, the number of tokens in the
level 1 layer, but k, is fixed(k, <k,). In particular,
it gives a) the simulated mean waiting time, and b)
the upper and lower bound by simulating the lower
and upper bound queueing models. A lower bound
is chosen from the maximum value of (4). And, an
upper bound is chosen from the minimum value of
(4) for the better tightness.

As can be seen the above table 1 to 3 when k
is fixed, the simulated mean waiting time is close
to the upper bound of the mean waiting time in the
beginning, and later it tends to approach to its

lower bound. This is because, the token in the first

Table 1 Poisson (A= %, 3" =2.5,5,=12.5, s,=14) when k, =5
number of tokens(k,) 5 6 7 8
upper bound 13.82 10.85 10.85 10.85 10.85
simulated mean waiting time 11.13 3.31 1.47 0.94 0.77
lower bound 10.85 3.16 1.37 0.94 0.77
Table 2 Erlang 2 (A= %s =2.5,5,=12.5, s,=14) when k =5
number of tokens(k,) 5 6 7 8
upper bound 6.43 41 4.11 411 4.11
simulated mean waiting time 4.37 0.98 0.35 0.35 0.35
lower bound 4.11 0.93 0.35 0.35 0.35
1 2 1 1« — — 2
Table 3 Hyper (p, = TP =g, M= g = s =25,5,=125, 5= 14) when k, =5, ¢2=2.31
number of tokens(k,) 5 6 7 8
upper bound 32.48 114 114 114 114
simulated mean waiting time 28.87 9.42 4.93 2.94 2.21
lower bound 11.4 4.25 3.25 2.59 1.87
Table 4 Poisson (A= % s'=125,5,=125, s,=14) when k,=7
number of tokens(k;) 4 5 6
upper bound =] 10.85 3.16 1.48
simulated mean waiting time 1.81 147 1.47 1.47
lower bound 1.71 1.37 0.70 0.70
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Table 5 Erlang 2 (A= %, " =2.5,5=125, s;=14) when k,=7
number of tokens(k,) 4 5 6 7
upper bound 0o 4.11 0.93 0.36
simulated mean waiting time 045 0.35 0.35 0.35
lower bound 0.36 035 0.20 0.20 |
-3 2 =2 L5t =25,5,= 55= ky=7, c2=231
Table 6 Hyper (p, = ToP2= E"/\l 5= 308 = 258= 12.5, s,=14) when k=7, =2
number of tokens(k;) 4 5 6 7 T
upper bound oo 114 6.30 4.25
simulated mean waiting time 5.30 4.93 468 425
lower bound 3.70 3.25 1.45 1.45

layered queueing network has influenced much for
the flow dynamics. However, the simulated mean
waiting time is close to the lower bound of the
mean waiting time in the beginning, and later it
tends to approach to its upper bound when k&, is
fixed. This result is similar to that of 2 node queu-
eing network.

5. Conclusions

In this paper, we analyzed the mean waiting time
on the nested open queueing network, where the
population within each subnetwork is controlled by
a semaphore queue. The queueing network can be
transformed into a simpler queueing network. A
major characteristic of this model is that the lower
layer flow is halted by the state of higher layer.
The lower bound and upper bound were checked
by comparing them with the mean waiting time in
3

estimates were obtained assuming Poisson arrivals

node nested queueing

network. Simulation

and other phase-type arrival process, ie., Erlang
The bounds
obtained can be applied to get more exact approxi-

and hyper—exponential distributions.
mation using the suitable approach.
An important problem that is yet to be con-
sidered, is the characterization of the departure
process from the external queue, which is the arr—
ival process to the first node. Once we provide the
characterization of the arrival process to the first
node, then the restriction of the semaphore queue
can be relaxed. Also it would be interesting to
further study the queueing network to obtain per-

formance characteristics such as approximation of

the mean waiting time and the variance of the

interdeparture time.
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