DOI QR코드

DOI QR Code

Projected Circular and l-Axial Skew-Normal Distributions

  • Published : 2009.08.31

Abstract

We developed the projected l-axial skew-normal(LASN) family of distributions for I-axial data. The LASN family of distributions contains the semicircular skew-normal(SCSN) and the circular skew-normal(CSN) families of distributions as special cases. The LASN densities are similar to the wrapped skew-normal densities for the small values of the scale parameter. However CSN densities have more heavy tails than those of the wrapped skew-normal densities on the circle. Furthermore the CSN densities have two modes as the scale parameter increases. The LASN distribution has very convenient mathematical features. We extend the LASN family of distributions to a bivariate case.

Keywords

References

  1. Abramowitz. M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover Publications, New York
  2. Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178
  3. Azzalini, A. (2005). The skew-normal distribution and related multivariate families (with discussion), Scandinavian Journal of Statistics, 32, 159-188(C/R 189-200) https://doi.org/10.1111/j.1467-9469.2005.00426.x
  4. Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions, Journal of the Royal Statistical Society, series B, 61, 579-602 https://doi.org/10.1111/1467-9868.00194
  5. Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution, Biometrika, 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
  6. Fisher, N. I. (1993). Statistical Analysis of Circular Data, Cambridge University Press, Cambridge
  7. Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.), ed. A. Jeffrey, Academic Press, San Diego
  8. Guardiola, J. H. (2004). The Semicircular Normal Distribution, Ph. D. Dissertation, Baylor University, Institute of Statistics
  9. Healy, M. J. R. (1968). Multivariate normal plotting, Applied Statistics, 17, 157-161 https://doi.org/10.2307/2985678
  10. Jammalamadaka, S. R. and Kozubowski, T. J. (2004). New families of wrapped distributions for modeling skew circular data, Communications in Statistics-Theory and Methods, 33, 2059-2074 https://doi.org/10.1081/STA-200026570
  11. Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific Publishing, Singapore
  12. Jones, T. A. (1968). Statistical analysis of orientation data, Journal of Sedimentary Petrology, 38, 61-67
  13. Mardia, K. V. and Jupp, P. (2000). Directional Statistics, John Wiley & Sons, Chichester
  14. Neider, J. A. and Mead, R. (1965). A simplex method for function minimization, The Computer Journal, 7, 308-313 https://doi.org/10.1093/comjnl/7.4.308
  15. Owen, D. B. (1956). Tables for computing bivariate normal probabilities, Annals of Mathematical Statistics, 27, 1075-1090 https://doi.org/10.1214/aoms/1177728074
  16. Pewsey, A. (2000a). The wrapped skew-normal distribution on the circle, Communications in Statistics-Theory and Methods, 29, 2459-2472 https://doi.org/10.1080/03610920008832616
  17. Pewsey, A. (2000b). Problems of inference ofr Azzalini's skew-normal distribution, Journal of Applied Statistics, 27, 859-870 https://doi.org/10.1080/02664760050120542
  18. Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution, Environmental and Ecological Statistics, 13, 257-269 https://doi.org/10.1007/s10651-005-0010-4
  19. Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data, Computational Statistics and Data Analysis, 52, 1516-1523 https://doi.org/10.1016/j.csda.2007.04.017

Cited by

  1. Skew Normal Boxplot and Outliers vol.19, pp.4, 2012, https://doi.org/10.5351/CKSS.2012.19.4.591