Abstract
Stratification of population is widely used to improve the efficiency of the estimation in a sample survey. However, it causes several problems when there are some variables containing outliers. To overcome these problems, Park and Yun (2008) proposed a rather subjective method, which finds outliers before $\kappa$-means clustering for stratification. In this study, we propose the $\kappa$-spatial medians clustering method which is more robust than $\kappa$-means clustering method and also does not need the process of finding outliers in advance. We investigate the characteristics of the proposed method through a case study used in Park and Yun (2008) and confirm the efficiency of the proposed method.
표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.