Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Published : 2009.08.31

Abstract

The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Keywords

References

  1. Aguilera G, Kiss A, Luo X. Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol 7: 775−783, 1995 https://doi.org/10.1111/j.1365-2826.1995.tb00714.x
  2. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360−375, 1962
  3. Armando I, Carranza A, Nishimura Y, Hoe KL, Barontini M, Terron JA, Falcon-Neri A, Ito T, Jourio AV, Saavedra JM. Peripheral administration of and angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology 142: 3880−3889, 2001 https://doi.org/10.1210/en.142.9.3880
  4. Armando I, Jezova M, Bregonzio C, Baiardi G, Saavedra JM. Angiotensin II AT1 and AT2 receptor types regulate basal and stress-induced adrenomedullary catecholamine production through transcriptional regulation of tyrosine hydroxylase. Ann NY Acad Sci 1018: 302−309, 2004 https://doi.org/10.1196/annals.1296.036
  5. Barber MN, Sampey DB, Widdop RE. AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats. Hypertension 34: 1112−1116, 1999 https://doi.org/10.1161/01.HYP.34.5.1112
  6. Bunn SJ, Marley PD. Effects of angiotensin II on cultured, bovine adrenal medullary cells. Neuropeptides 13: 121−132, 1989 https://doi.org/10.1016/0143-4179(89)90009-7
  7. Castren E, Saavedra JM. Repeated stress increases the density of angiotensin II binding sites in the rat paraventricular nucleus and subfornical organ. Endocrinology 122: 370−372, 1988 https://doi.org/10.1210/endo-122-1-370
  8. Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72: 15−48, 1992
  9. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26: 13−25, 2000 https://doi.org/10.1016/S0896-6273(00)81133-2
  10. Challiss RA, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083−1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  11. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429−434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  12. Critchley L, Ding B, Fok B, Wang D, Tomlinson B, James A, Thomas GN, Critchley J. The effects of candesartan and ramipril on adrenal catecholamine release in anaesthetized dogs. Eur J Pharmacol 489: 67−75, 2004 https://doi.org/10.1016/j.ejphar.2004.02.036
  13. Dendorfer A, Raasch W, Tempel K, Dominiak P. Interactions between the renin-angiotensin system (RAS) and the sympathetic system. Basic Res Cardiol 93: 24−29, 1998 https://doi.org/10.1007/s003950050202
  14. Dunn LA, Holz RW. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem 258: 4989−4993, 1983
  15. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69−71, 1984 https://doi.org/10.1038/309069a0
  16. Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268: 239−247, 1995 https://doi.org/10.1126/science.7716515
  17. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2}$ binding and $Ca^{2}$ permeability. Biochem Pharmacol 38: 3995−4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  18. Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992−2998, 1982 https://doi.org/10.1016/0024-3205(82)90066-2
  19. Han HJ, Park SH, Koh HJ, Taub M. Mechanism of regulation of $Na^+$ transport by angiotensin II in primary renal cells. Kidney Int 57: 2457−2467, 2000 https://doi.org/10.1046/j.1523-1755.2000.00104.x
  20. Hano T, Mizukoshi M, Baba A, Nakamura N, Nishio I. Angiotensin II subtype 1 receptor modulates epinephrine release from isolated rat adrenal gland. Blood Press 5: 105−108, 1994 https://doi.org/10.3109/08037059609062116
  21. Holz RW, Senter RA, Frye RA. Relationship between $Ca^{2+}$ uptake and catecholamine secretion in primary dissociated cultures of adrenal modulla. J Neurochem 39: 635−640, 1982 https://doi.org/10.1111/j.1471-4159.1982.tb07940.x
  22. Israel A, Stromberg C, Tsutsumi K, Garrido MR, Torres M, Saavedra JM. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res Bull 38: 441−446, 1995 https://doi.org/10.1016/0361-9230(95)02011-F
  23. Kubo T, Numakura H, Endo S, Hagiwara Y, Fukumori R. Angiotensin receptor blockade in the anterior hypothalamic area inhibits stress-induced pressor responses in rats. Brain Res Bull 56: 569−574, 2001 https://doi.org/10.1016/S0361-9230(01)00729-8
  24. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115−125, 1992 https://doi.org/10.1007/BF02974085
  25. Livett BG, Marley PD. Non cholinergic control of adrenal catecholamine secretion. J Anat 183: 277−289, 1993
  26. Martineau D, Lamouche S, Briand R, Yamaguchi N. Functional involvement of angiotensin AT2 receptor in adrenal catecholamine secretion in vivo. Can J Physiol Pharmacol 77: 367−374, 1999 https://doi.org/10.1139/cjpp-77-5-367
  27. Martineau D, Yamaguchi N, Briand R. Inhibition by BMS 186295, a selective nonpeptide AT1 antagonist, of adrenal catecholamine release induced by angiotensin II in the dog in vivo. Can J Physiol Pharmacol 73: 459−464, 1995 https://doi.org/10.1139/y95-058
  28. McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57: 521−546, 1995 https://doi.org/10.1146/annurev.ph.57.030195.002513
  29. Nahmod VE, Finkielman S, Benarroch EE, Pirola CJ. Angiotensin regulates release and synthesis of serotonin in brain. Science 202: 1091−1093, 1978 https://doi.org/10.1126/science.152460
  30. Phillips MI, Speakman EA, Kimura B. Levels of angiotensin and molecular biology of the tissue rennin angiotensin systems. Regul Pept 43: 1−20, 1993 https://doi.org/10.1016/0167-0115(93)90403-U
  31. Plunkett LM, Correa FM, Saavedra JM. Quantitative autoradiographic determination of angiotensin-converting enzyme binding in rat pituitary and adrenal glands with 124I−351A, a specific inhibitor. Regul Pept 28: 263−272, 1985
  32. Powis DA, O'Brien KJ. Angiotensin II increases catecholamine release from bovine adrenal medulla but does not enhance that evoked by $K^+$ depolarization or by carbachol. J Neurochem 57: 1461−1469, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb06339.x
  33. Saavedra JM. Brain and pituitary angiotensin. Endocr Rev 13: 329−380, 1992 https://doi.org/10.1210/edrv-13-2-329
  34. Saiki Y, Watanabe T, Tan N, Matsuzaki M, Nakamura S. Role of central ANG-II receptors in stress-induced cardiovascular and hyperthermic responses in rats. Am J Physiol 272: 26−33, 1997 https://doi.org/10.1152/ajpregu.1997.272.1.R26
  35. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816−17823, 1989
  36. Seltzer A, Bregonzio C, Armando I, Baiardi G, Saavedra JM. Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Res 1028: 9−18, 2004 https://doi.org/10.1016/j.brainres.2004.06.079
  37. Stoehr SJ, Smolen JE, Holz RW, Agranoff BW. Inositol trisphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J Neurochem 46: 637−640, 1986 https://doi.org/10.1111/j.1471-4159.1986.tb13014.x
  38. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^2+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  39. Swope SL, Moss SJ, Blackstone CD, Huganir RL. Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J 6: 2514−2523, 1992
  40. Takekoshi K, Ishii K, Kawakami Y, Isobe K, Nakai T. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular $Ca^{2+}$-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin cells. Endocrinol 142: 3075−3086, 2001 https://doi.org/10.1210/en.142.7.3075
  41. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  42. Teschemacher AG, Seward EP. Bidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells. The J Neurosci 20: 4776−4785, 2000
  43. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Smith RD. New perspectives in angiotensin system control. J Hum Hypertens 7: 19−31, 1993
  44. Uresin Y, Erbas B, Ozek M, Ozk$\ddot{o}$k E, G$\ddot{u}$rol AO. Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J Renin Angiotensin Aldosterone Syst 5: 93−96, 2004 https://doi.org/10.3317/jraas.2004.017
  45. Vijayapandi P, Nagappa AN. Biphasic effects of losartan potassium on immobility in mice. Yakugaku Zasshi 125: 653−657, 2005 https://doi.org/10.1248/yakushi.125.653
  46. Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15: 283−292, 1985 https://doi.org/10.1016/0306-4522(85)90135-6
  47. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463−480, 1981
  48. Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PB. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther 255: 584−592, 1990
  49. Worck RH, Frandsen E, Ibsen H, Petersen JS. $AT_1$ and $AT_2$ receptor blockade and epinephrine release during insulin-induced hypoglycemia. Hyperten 31: 384−390, 1998
  50. Yang G, Xi Z, Wan Y, Wang H, Bi G. Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals 2: 166−172, 1993 https://doi.org/10.1159/000109488
  51. Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin- angiotensin-aldosterone system. Nat Rev Drug Discov 1: 621−636, 2002 https://doi.org/10.1038/nrd873