Selection of the principal genotype with genetic algorithm

유전자 알고리즘에 의한 우수 유전자형 선별

  • Published : 2009.07.31

Abstract

From development of computer science, genetic algorithm has been applied to many fields for search like non-linear problem based on various variables and optimization process. Among others, in the data mining field, there are methods to select the best input variables for model accuracy and various predict models which were merged by using the genetic algorithm. In the meantime, to improve and preserve quality of the Hanwoo (Korean cattle) which is represented the agricultural industry in our country, we need to find out outstanding economical traits of Hanwoo in having specific genotype of single nucleotide polymorphism (SNP) which is inherited to next generation. According to, This research proposed the selecting method to find genotype of SNPs marker which affects economical traits of the Hanwoo by using the genetic algorithm. And we selected the best genotypes of the principal SNPs marker by applying to real data on Hanwoo genetic.

컴퓨터공학의 발전으로 인해, 여러 개의 변수가 존재하는 비선형 문제와 같은 최적해 탐색과 최적화에 사용되는 유전자 알고리즘은 많은 분야에서 활발하게 응용되고 있다. 그 중, 데이터마이닝분야에서 유전자 알고리즘을 이용하여 정확도를 최대로 하는 입력변수 선택방법과 여러 예측모형을 통합하는 방법 등이 제시되었다. 한편, 우리나라 축산업을 대표하는 한우의 유전자원 보존과 능력향상을 위해서는 다음세대에 유전이 되는 단일염기다형성에서 특정 유전자형을 가진 한우가 경제형질이 우수한지를 찾아낼 필요가 있다. 이에 따라, 유전자 알고리즘을 이용하여 한우의 경제형질에 가장 많은 영향을 주는 단일염기다형성 조합마커의 유전자형을 선택하는 방법을 제시하였다. 그리고 실제 한우 유전 데이터에 적용하여 주요 단일염기다형성 조합마커에서 우수 유전자형들을 선별하였다.

Keywords

References

  1. 김여근, 윤복식, 이상복 (1999). <메타 휴리스틱>, 영지문화사, 서울.
  2. 장영식, 김종우, 허준 (2008). 유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용. <지능정보연구>, 14, 133-154.
  3. 최규석, 박종진 (2008). <인공지능시스템>, 21세기사, 파주.
  4. 홍승현, 신경식 (2003). 유전자 알고리즘을 활용한 인공신경망 모형 최적 입력변수의 선정. <한국지능정보시스템학회 논문지>, 9, 227-249.
  5. Barbro, B., Teija, L. and Kaisa, S. (1996). Neural networks and genetic algorithms for bankruptcy predictions. Proceedings of The third World Congress on Expert Systems, 123-130.
  6. Barendse, W., Bunch, R., Thomas, M., Armitage, S., Baud, S. and Donaldson, N. (2004). The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Australian Journal of Experimental Agriculture, 44, 669-674. https://doi.org/10.1071/EA02156
  7. Colin, A. M. (1994). Genetic algorithms for financial modeling. In Dedoeck, G.J. (Edition), Trading on the edge, John Wiley, New York, 148-173.
  8. Goldberg, D. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule learning, Ph.D. Thesis, University of Michigan.
  9. Goldberg, D. and Lingle, R. (1985). Alleles, loci, and the travelling salesman problem. Proceedings of ICGA, 85, 154-159.
  10. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Massachusetts.
  11. Good, P. (2000). Permutation test: A ractical guide to resampling method for testing hypotheses, Springer-Verlag Berlin and Heidelberg GmdH & Co., New York.
  12. Han, I., Jo, H. and Shin, K. S. (1997). The hybrid systems for credit rating. Journal of the Korean Operations Research and Management Science Society, 22, 163-173.
  13. Holland, J. H. (1997). Adaptation in natural and artificial systems, The University of Michigan Press, Michigan.
  14. Kim, J. W., Jang, T. K., Park, Y. A. and Yeo, J. S. (2000). Linkage mapping of chromosome 6 in the Korean Cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences, 13, 235.
  15. Kim, J. W., Park, S. I. and Yeo, J. S. (2003). Linkage mapping and QTL on chromosome 6 in Hanwoo (Korean Cattle). Asian-Australasian Journal of Animal Sciences, 16, 1402-1405. https://doi.org/10.5713/ajas.2003.1402
  16. Kitano, H. (1992). Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithmes, TechnicalReport, Carnegie Mellon University.
  17. Koza, J. (1993). Genetic programming, The MIT Press, Cambridge.
  18. Lee, J. Y. and Choi, Y. M. (2007). Hanwoo individual identification with DNA marker information. Journal of the Korean Data and Information Science Society, 18, 599-608.
  19. Lee, Y. S., Lee, J. H., Lee, J. Y., Kim, J. J., Park, H. S. and Yeo, J. S. (2008). Identification of Candidate SNP (Single Nucleotide Polymorphism) for Growth and Carcass Traits Related to QTL on Chromosome 6 in Hanwoo (Korean Cattle). Asian-Australasian Journal of Animal Sciences, 21, 1703-1709. https://doi.org/10.5713/ajas.2008.80223
  20. Lee, J. Y., Kim, D. C. (2009). Restricted partition method and gene-gene interaction analysis with Hanwoo economic traits. Journal of the Korean Data and Information Science Society, 20, 171-178.
  21. Page, B. T., Vasas, E., Quaas, R. L., Thallman, R. M., Wheeler, T. L., S- hackelford, S. D., Koohmaraie, M., White, S. N., Bennett, G. L., Keele J. W., Dikeman, M. E. and Smith, T. P. L. (2004). Association of markers in the bovine CAPNI gene with meat tenderness in large crossbred populations that sampleinfuential industry sires. Journal of Animal Science, 82, 3474-3481. https://doi.org/10.2527/2004.82123474x
  22. Shin, K. S. and Han, I. (1998). Using genetic algorithm to support case-based reasoning: Application to corporate bond rating integration. Proceedings of Second Asia Pacific Decision Sciences Institute (DSI) Conference, Taipei, 1-11.
  23. Snelling, W. M., Casas, E., Stone, R. T., Keele, J. W., Harhay, G. P., Benett, G. L. and Smith, T. PL. (2005). Linkage mapping bovine EST-based SNP. BMC Genomics, 6, 74-84. https://doi.org/10.1186/1471-2164-6-74
  24. Whitely, D., Starkweather, T. and Fuquay, D. (1989). Scheduling problems and traveling salesman: The genetic edge recombination operator. Proceedings of ICGA, 89.
  25. Yeo, J. S., Lee, J. Y. and Kim, J. W. (1989). DNA marker mining of ILSTS035 microsatellite locus on chromosome 6 of hanwoo cattle. Journal of Genetics, 83, 245-250. https://doi.org/10.1007/BF02717893