DOI QR코드

DOI QR Code

Effects of Structural Difference of Ionic Liquids on the Catalysis of Horseradish Peroxidase

  • Hong, Eun-Sik (SKYBIO Team, SK Chemicals) ;
  • Park, Jung-Hee (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Ryu, Keun-Garp (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • Published : 2009.07.31

Abstract

The dependence of the catalytic properties of horseradish peroxidase on the structural changes of ionic liquids was investigated with two water-miscible ionic liquids, N-butyl-3methypyridinium tetraftuoroborate ([$BMP_y$][$BF_4$]) and 1-butyl-3-methylimidazolium methylsulfate ([BMIM][$MeSO_4$]), each of which shares an anion ($BF_4^-$) or a cation ($BMIM^+$) with 1-butyl-3-methylimidazolium tetraftuoroborate ([BMIM][$BF_4$]), respectively. The oxidation of guaiacol (2-methoxyphenol) with $H_2O_2$was used as a model reaction. In order to minimize the effect of solution viscosity on the kinetic constants of the enzymatic catalysis, the enzymatic reactions for the kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. Similarly to the previously reported results for [BMIM][$BF_4$], as the concentration of [$BMP_y$][$BF_4$] increased, the $K_m$value increased with a decrease in the $k_{cat}$value: the $K_m$value increased markedly from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to the enzyme. On the contrary, [BMIM][$MeSO_4$] decreased the Km value to 1.4 mM in 25% (v/v) ionic liquid. [BMIM][$MeSO_4$] also decreased $k_{cat}$more than 3-folds [from 13.8 $s^{-1}$in 100% water to 4.1 $s^{-1}$in 25% (v/v) ionic liquid]. These results indicate that the ionic liquids interact with the enzyme at the molecular level as well as at a macroscopic thermodynamic scale. Specifically, the anionic component of the ionic liquids influenced the catalysis of horseradish peroxidase in different ways.

Keywords

References

  1. Al-Kassim, L. and K. E. Taylor. 1994. Enzymatic removal of selected aromatic contaminants from wastewater by a fungal peroxidase from Coprinus macrorhizus in batch reactor. J. Chem. Tech. Biotechnol. 61: 179-182 https://doi.org/10.1002/jctb.280610214
  2. Chakraborty, J. and T. K. Dutta. 2006. Isolation of a Pseudomonas sp. capable of utilizing 4-nonylphenol in the presence of phenol. J. Microbiol. Biotechnol. 16: 1740-1746
  3. Ghan, H., T. Shutava, A. Patel, V. T. John, and Y. Lvov. 2004. Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules. Macromolecules. 37: 4519-4524 https://doi.org/10.1021/ma035896h
  4. Halliwell, B. and S. Ahluwalia. 1976. Hydroxylation of p-coumaric acid by horseradish peroxidase. Biochem. J. 153: 513-518 https://doi.org/10.1042/bj1530513a
  5. Hinckley, G., V. V. Mozhaev, C. Budde, and Y. L. Khmelnitsky. 2002. Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol. Lett. 24: 2083-2087 https://doi.org/10.1023/A:1021305229969
  6. Hong, E. S., O. Y. Kwon, and K. Ryu. 2008. Strong substratestabilizing effect of a water-miscible ionic liquid [BMIM][$BF_4$] in the catalysis of horseradish peroxidase. Biotechnol. Lett. 30: 529-533 https://doi.org/10.1007/s10529-007-9570-8
  7. Kang, Y. S., Y. J. Kim, C. O. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825
  8. Kragl, U., M. Eckstein, and N. Kaftzik. 2002. Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13: 565-571 https://doi.org/10.1016/S0958-1669(02)00353-1
  9. Laszio, J. A. and D. L. Compton. 2001. $\alpha$-Chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol. Bioeng. 75: 181-186 https://doi.org/10.1002/bit.1177
  10. Lee, Y., C. Park, B. Lee, E. Han, T. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231
  11. Lee, Y., O. Kwon, I. Yoo, and K. Ryu. 2007. Effect of ionic liquid on the kinetics of peroxidase catalysis. J. Microbiol. Biotechnol. 17: 600-603
  12. Lozano, P., T. de Diego, J. P. Guegan, M. Vaulyier, and J. L. Iborra. 2001. Stabilization of $\alpha$-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol. Bioeng. 75: 563-569 https://doi.org/10.1002/bit.10089
  13. Maruyama, T., S. Nagasawa, and M. Goto. 2002. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol. Lett. 24: 1341-1345 https://doi.org/10.1023/A:1019848400436
  14. Nicell, J. A. 1994. Kinetics of horseradish peroxidase-catalyzed polymerization and precipitation of aqueous 4-chlorophenol. J. Chem. Tech. Biotechnol. 60: 203-215 https://doi.org/10.1002/jctb.280600214
  15. Poker, Y. and N. Janjic. 1987. Enzyme kinetics in solvent of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis. Biochemistry. 26: 2597-2606 https://doi.org/10.1021/bi00383a028
  16. Rao, A. M., V. T. John, R. D. Gonzalez, J. A. Akara, and D. L. Kaplan. 1993. Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems. Biotechnol. Bioeng. 41: 531-540 https://doi.org/10.1002/bit.260410505
  17. Ryu, K., J. Park, and K. Im. 1996. Peroxidase-catalyzed removal of aromatic pollutants. Korean J. Biotechnol. Bioeng. 11: 681-688
  18. Van Rantwijk, F., R. M. Lau, and R. A. Sheldon. 2003. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131-138 https://doi.org/10.1016/S0167-7799(03)00008-8
  19. Whitaker, J. R. 1972. Principles of Enzymology for the Food Science, pp. 591-605. Marcel Dekker, Inc., New York, U.S.A
  20. Woo, S. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  21. Yang, Z. and W. Pan. 2005. Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37: 19-28 https://doi.org/10.1016/j.enzmictec.2005.02.014

Cited by

  1. Substrate Stabilization and Noncompetitive Inhibition Effects of a Water-miscible Ionic Liquid [BMPy][$BF_4$] in the Catalysis of Horseradish Peroxidase vol.15, pp.6, 2009, https://doi.org/10.1007/s12257-010-0031-1
  2. Partial uncompetitive inhibition of horseradish peroxidase by a water-miscible ionic liquid [BMIM][MeSO4] vol.33, pp.8, 2011, https://doi.org/10.1007/s10529-011-0618-4
  3. The effect of the nature of hydrophilic ionic liquid on the catalytic activity of horseradish and soybean peroxidases vol.69, pp.2, 2009, https://doi.org/10.3103/s0027131414020060