Abstract
Input shaping has been a very effective control method for reducing payload swing in industrial bridge and gantry cranes. However, conventional input shapers often degrade performance when applied to tower cranes because of the nonlinear coupled dynamics between rotational and radial motions in tower cranes. To alleviate this problem, a new input shaper for tower cranes is developed by means of dynamic modeling, analysis and optimization. This work investigates the tower crane dynamics along with parameters of the tower crane varied. A performance index for input shaper design is proposed so as to reduce the coupled residual vibration of a tower crane using only rotational motion of tower crane. The proposed new input shaper is verified to be effective through simulations and experiments.