Journal of Korea Multimedia Society Vol. 12, No. 6, JUNE 2009(pp. 876-881)

Prediction-based Dynamic Thread Pool System for
Massively Multi-player Online Game Server

Woosuk Ju*, Choongjae Im"

ABSTRACT

Online game servers usually has been using the static thread pool system. But this system is not
fit for huge online game server because the overhead is always up-and-down. Therefore, in this paper,
we suggest the new algorithm for huge online game server. This algorithm is based on the pre—
diction-based dynamic thread pool system. But it was developed for web servers and every o.1 seconds
the system prediction the needed numbers of threads and determine the thread pool size. Some ex-
perimental results show that the check time of 0.4 seconds is the best one for online game server and
if the number of worker threads do not excess or lack to the given threshold then we do not predict
and keep the current state. Otherwise we apply the prediction algorithm and change the number of threads.
Some experimental results shows that this proposed algorithm reduce the overhead massively and make
the performance of huge online game server improved in comparison to the static thread pool system.

Key words: massively multi-player online game server, thread pool, prediction-based dynamic thread

pool system

1. INTRODUCTION

Computer online game is a kind of game that
includes hundreds of players distributed over WAN
scale networks. Now, there have been two funda—
mental server architectures proposed Peer-to-Peer
(P2P) and Client-Server (C/S) for communicating
each other. We concentrate on the research based
on C/S model. To construct C/S online game, we
need make a server program to do with players’
requests and send related data to specific clients.
For designing this program we need first know
some characteristics about online game. First, ev-

ery player requests game packets in the time of

¥ Corresponding Author : Choongjae Im, Address:
(705-701) Department of Game & Mobile Contents,
Keimyung University, Deagu, Korea, TEL : +82-53-620~
2185, FAX : +82-53-620-2175, E-mail : dooly@gw kmu.ac.kr
Receipt date : June 8, 2009, Approval date : June 23, 2009
"Dept. of Game, Dongseo University
(E-mail : savrang@dongseo.ac.kr)

" Dept. of Game & Mobile Contents, Keimyung University
The present research has been conducted by the Bisa
Research Grant of Keimyung University

o.1seconds constantly until the game is ended and
its processing time must be very short. Second, a
huge of requests is transferred to game server
from hundreds of player simultaneity. Third, re-
quests need to be response and the response packet
are sent to related clients by game server in time
but its size is extremely small in contrast with web
server. Finally, normally, the number of player is
below 1000 in the same game server and take the
static thread pool system.

In this paper, we experiment with below 1000
users based on prediction-based dynamic thread
pool system. But we find that the system was not
fit for huge online game server because overhead
is up~and-down constantly and the addition and
reduction process happened frequently. So the
amount of processed packets is reduced. Therefore,
we propose to set the threshold for the number of
working thread and find the fact that the check time
must be increased by some experiment. Under these
condition, we apply the prediction-based dynamic
thread pool system to huge online game server.

Prediction-based Dynamic Thread Pool System for Massively Multi-player Online Game Server 877

Some experimental results show that our proposed
algorithm can make the overhead reduced and the
performance of online game server increased.

This paper is composed as followings. We first
introduce some characteristics of current online
game server and the theories of stati c/pre-
diction-based dynamic thread pool system in
Section 2. We suggest the our proposed algorithm
for huge online game server in Section 3. Finally,
we compare the performance of the proposed online
game server with static thread pool system and
give some results in Section 4. Conclusions are
presented in Section 5.

2. PREVIOUS WORKS

The client's requests transferred by the
TCP/UDP layer are processed in worker thread.
Fig 1 shows the overall architecture of thread pool
system.

There are two methods to determine the number
of worker threads, called static thread pool system
and dynamic tread pool system. In this section, we
will introduce the static thread pool system for on—
line game server and prediction-based dynamic

thread pool system for online game server.

2.1 Static thread pool system for online game
server

This system use the fixed worker thread pool
size as follows.

TCPUDP

4

[Hacovm o |
{[Semtag byter |

WM
M sonket| 4

s | T Siiﬁt;ng'
.{ Ruseuing boms Window

Sendiony tuiar

'! aacketl { wew:gmm

e Stding
L Recomng ey Window
S b

o~ § Raceiving bufler
] { e

Fig. 1. Architecture of thread pool system

worker thread pool size =
the number of CPU X 2

This means that the size of thread pool should
be two times of the number of CPUs on the host
machine [1]. Normally, it is considered as a start
point and then is tuned according as the ability of
processing packets and overhead to game system
in order to further optimize the size of thread pool.
Because there is not any time-waste on creating
and destroying threads during the runtime, it re-
duces the response time. And it also avoids con-
suming the resource of server such as CPU usage
and memory, when it creates overfull threads in
game server. However, from the fixed the pool size,
it can not use the system resource effectively, thus
it can make lower the game server performance
lower [2].

To solve this problem, it is desirable to have a
kind of thread pool which can configure itself
based on the current status of thread pool. That
is dynamic thread pool system. D. Xu and B. Bode
suggested the dynamic thread pool system using
the heuristic algorithm. J.H. Jung et al. [3] sug-
gested that the worker thread pool size is de-
termined by the prediction—-based dynamic thread
pool system.

2.2 Prediction-based Dynamic Thread Pool
System

It is a combination of a worker thread pool and
a pool manager thread. Pool manager thread can
tune the size of worker thread pool based on the
current status of worker thread pool so as to deal
with more requests through using the rest of game
server’'s resource.

Fig 2 shows about internal operation of Pool
Manager Thread. Pool Manager Thread can tune
the size of Worker Thread Pool.

It is unique and works through checking the sta-
tus of worker thread pool (Busy, Idle and Normal)
at intervals of a check time. If the status of worker

878 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 12, NO. 6, JUNE 2009

Fig. 2. Flow chart of pool manager thread operation

thread pool is busy, pool manager thread adds
some new worker threads. If the status of worker
thread pool is idle, pool manager deletes some free
worker threads. If status is normal, there is not any
change in worker thread pool until next check.
Dynamic Thread Pool avoids the management
overhead of too many threads because it can delete
extra worker threads by itself. And it can increase
the performance because it can add several worker
threads when most of worker threads are busy to
work and there are still many requests waiting for
processing. However, because its variance of
thread pool size is fixed and the amount of clients’
requests changes constantly, though worker
threads added into the dynamic thread pool can in—
crease the server performance of processing re-
quests, sometimes they are not enough. To solve
this problem, exponential average can be used to
predict the amount of worker threads in next time.

If we can predict how many extra worker
threads is needed in next time, we can save creat-
ing time and avoid process those packets until the
idle worker thread is created when there are big
amount of packets arrived. And we can also reduce
wasting in system resource because thread waste
a part of memory and CPU scheduling time when
too many idle worker threads still exist. Today,
predictable dynamic thread pool has been advanced.

Before tuning the thread pool size, game server
program first predicts the amount of threads need-
ed in the next time through using exponential
average idea [4,5] in favor of increasing the server
performance and saving the extra system resource
waste. Exponential average approach [5] is used
in the CPU scheduling problem for the prediction
of the idle period. In the CPU scheduling problem,
operating systems need to predict the length of the
next CPU burst in order to make appropriate proc-
ess scheduling. In general, the next CPU burst is
predicted as an accumulative average of the meas-
ured lengths of previous CPU bursts. Similarly, we
can predict the next idle period by the accumulative
average of the previous idle periods. Exponential

average formula is
Lo=a,+(1-a),(0<a<1)

The parameter o controls the relative weight of
recent and past history in the prediction. If =0,
then I, ., = C. In other words, the recent history
has no effect. On the other hand, if a=1, then
I, =t,.. In this case, the prediction only takes into
account the most recent running threads but ig-
nores the previous predictions. In our im-
plementation, « is set to be 0.5 so that the recent
history and past history are equally weighted.

3. PROPOSED SYSTEM AND
EXPERIMENTAL RESULTS

3.1 Proposed System

Fig 3 shows internal operation of pool manager
thread in addition to the function of predicting
how many worker threads need be added/deleted
based on the amount of worker threads in the next
time when the status of worker thread pool is
busy or idle.

This figure is full operation of pool manager
thread in our proposed system. There are two
problems to realize proposed system to online game

Prediction-based Dynamic Thread Pool System for Massively Multi-player Online Game Server 879

&

Add Thyead

3
B

Fig 3. Flow Chart of Pool Manager Thread operation
with predicting variance of worker threads

server programming. Problem 1 is whether pro—
posed system must be better than static thread pool
for any amount of users or not. Problem 2 is how
to determine check time. That is to say the fre-
quency of checking the status of worker thread
pool. If check time is too small, game server pro-
gram has to add/delete some threads very
frequently. It brings so much Creation/Destroy of
thread as to spend much time on creating/destroy-
ing thread instead of processing game packets. The
benefit of adding worker threads is canceled by the
overhead of threads’ creation. If check time is too
big, the Pool Manager Thread can not monitor the
status the dynamic thread pool effectively. To
judge that dynamic thread pool fits what kind of
online game server and describe the effect of check
time for improving the performance of game server
program, I do several groups of experimentations
with different user amount and tune the check time
value in every group.

The game server operating system is Windows
2000 Server running on two 2GHz Intel(R) Xeon
(TM) processors. The physical memory size is 2G.
Game server’s /0O model is IOCP. And clients run

0.01s 001

Dacket] Padiield ¥ Packet3 —‘

1s

Fig 4. Iteration of Packets sent by Client

on one 2.8GHz Intel(R) Pentium(R) 4 processor and
physical memory size is 512MB.

They are 800 users and 1000 users. We run 200
threads (every thread simulates one client) on one
client PC at best. A new thread will be created ev—
ery one second. Every client sent 3 kinds of differ-
ent packets. Sending method is as follows. The
whole testing time is 3 minutes.

3.2 Experimental results for problem 1

We did 10 tests about proposed system with dif-
ferent check times (they are from 100ms to
1000ms) and one test about static thread pool.
These following 3 figures are comparison diagrams
of game server with dynamic and static thread pool
as follows.

Fig 5 shows the experimental result that the
proposed system does not have difference with
static system.

Fig 6 shows that the effect of static thread pool
and dynamic thread pool is different. We can see
the performance of dynamic thread pool is much
better than the one of static thread pool when check
time equals 0.4s.

Fig 7 also shows that the effect of static thread
pool and dynamic thread pool is different. This time
we also can find the performance of dynamic

400 Users

packsts
§§§§§§§‘é§§§§§

1 16 28 43 57 71 85 98 M3 17 141156 168
tirne(s)

Fig 5. Proposed/Static Thread Pool for 400 Users

880 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 12, NO. 6, JUNE 2009

800 Users
%0 e 1}
B50 —
e 200
55%) 300
£ 40 B
s —50
& ¥ - 500
250
2 o
bt - S = - RS :—:;%D
1 15 20 43 & 71 85 93 113127 141 155 169 1000
time{e) et gtic

Fig 6. Proposed/Static Thread Poo! for 800 Users

1000 Users

packats
BEEBEARE8ERES

t 15 28 43 57 71 85 99 143 127 141 155 163
time{s)

Fig 7. Proposed/Static Thread Pool for 1000 Users

thread pool is much better than the one of static
thread pool when check time equals 0.4s again.

Through these experimentations above, we find
that the dynamic thread pool doesn’t make much
difference to the performance of game server using
static and proposed system when the amount of
users is 200, 400 and 600. However, the dynamic
thread pool starts to make much difference to the
performance of game server when the amount of
game users is 800 and 1000. And when check time
of dynamic thread pool is modified properly, the ef-
fect of dynamic thread pool is the best.

3.3 Experimental results for problem 2

Because the check time of dynamic thread pool
give the effect to the performance of game server
using dynamic thread pool, I listed the average
packets processed by dynamic thread pool when
the amount of users is 800 and 1000.

I find that the performance of game server is the
best when check time equals 400ms in the Fig 8

800 Users

packets
giglggagy

W 200 WU 400 SHe B0 WG SO0 900 K
vhieck finsims)

Fig 8. Average Packets processed by proposed
system for 800 Users

1000 tisers

moroposed

packels
gEBggseagsg

WO OO0 W0 40 500 8000 e B0 W0 R
check fimelmal

Fig 9. Average Packets processed by proposed
system for 1000 Users

and Fig 9 above.

4. CONCLUSIONS

In this paper, 1 built a dynamic thread pool sys—
tem for online game server program based on ex—
ponential average. It can check the status of work—
er thread pool at intervals and predict how many
worker threads are needed in the next time and
add/delete proper worker threads for improving the
performance of game server program and saving
the game server’s resource. From experimental re—~
sults, the dynamic thread pool system can increase
the throughput of game server only when the
amount of game user is huge. If there are not so
huge game users, it is possible in using static
thread pool or dynamic thread pool. In reverse, it
is better in using dynamic thread pool in game
server program when the scale of online game is
big. And when we use dynamic thread pool system
in online game program, we need to tune the check
time in order to obtain the best performance for

Prediction-based Dynamic Thread Pool System for Massively Multi-player Online Game Server 881

game Server program.

REFERENCES

[1] Richter J., Advanced Windows, 3rd Edition,
Microsoft Press, 1996.

(2] Jones, A., and Ohlund, J., Network program-
ming for Microsoft windows, 2nd Edition,
Microsoft Press, 1995.

[3] Jung, J. J, Han, S. Y., and Park, S. Y.
“Prediction-based dynamic thread pool model
for efficient resource usage,” Computer
Systems and Theory, Vol.31, No4, pp. 213-
223, 2004.

[4] Ling, Y., Mullen, T., and Lin, X., “Analysis of
Optimal Thread Pool Size,” ACM SIGOPS
Operating System Review, Vol.34, No.2, pp.
42-55, 2000.

[5] Peterson, J. L., and Silberschatz, A.
Operating System Concepts, 2nd Edition,
Addison-Wesley Publishing Co. Inc., 1985.

Woosuk Ju

He received his B.S. degree from
Kyungnam University, Masan,
Korea, in 1998 and his M.S. de-
grees from Dongseo University,
Busan, Korea, in 2005. He is
currently a Ph.D. degree student
of the Pusan National Univer—
sity, Korea. He is currently a professor of the Dept.
of Game in Dongseo University, Pusan, Korea. His re-
search interests include online game development and
image processing.

Choongjae Im

He received his B.S. and M.S.
degrees from Chungnam Natio-
nal University, Deajeon, Korea,
in 1991 and 1993, respectively.
He is currently a professor of the
Dept. of Game & Mobile Con-
tents in Keimyung University,
Daegu, Korea. His research interests include mul-
ti-platform game development and computer graphics.

