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Abstract
We propose new cointegration tests using signs of the regressors as instrumental variable. Our tests have the
asymptotic standard normal distribution and are free from the dimension of regressors under the null hypothesis
of no cointegration. A Monte-Carlo simulation shows that the proposed tests have a stable size and an improved
power. Particulary, the tests have better power for small numbers of observations.
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1. Introduction

Since the seminal work of Engle and Granger (1987, hereafter: EG test), there have been a number
of research and empirical works on cointegration. Most existing cointegration tests adopt ordinary
least squares estimation and the limiting null distributions of the test statistics are not standard normal
distributions. In addition, mostly the distributions depend on the dimension of the regressors and types
of deterministic trends.

Motivated by the sign test for unit roots of So and Shin (1999a), we develop EG type tests based
on sign as an instrumental variable(IV) in a single equation regression model. The asymptotic null
distribution of the proposed tests, the sign IV cointegration tests, is the standard normal, and does not
depend on the number of regressors. Thus there is no need to calculate separate critical values for the
new tests in contrast to other tests based on ordinary least squares estimates, and the proposed tests
are easy to implement.

The remainder of this paper is organized as follows. Section 2 proposes the test statistics, and
investigates the asymptotic null distributions of the tests. Section 3 provides some Monte-Carlo sim-
ulation results, and Section 4 concludes.

2. Test Statistics

Let yi,,...,y,, be p integrated variables, r = 1,...,T, and the first differences of y;, be i.i.d. with
mean O and variance 0'%. If there is a linear combination which is stationary, then we can conclude
that the p variables are cointegrated. Let u, be a linear combination of y;s such as u, = 'Y, where
Yi =i, yp0) and Bis a (p x 1) coefficient vector. Without loss of generality we can let the first
element of B be 1. In this sense, we are interested in testing whether #, has a unit root or not. We
consider the single equation cointegration model, Au, = ¢u;, + ¢, and this model can be represented as
follows:

A(}’l,t - aIXt) = ¢(Yl,:~1 - a,Xt—l) +& t=1,...,T, 2.0
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where X,=(y2,...,Yps), @ = (@2,a3,...,a,), ¢ is the AR(1) coefficient, ¢ are a white noise series,
and A is the first-difference operator such as Ay, = (1 — L)y, = y; — y,-1. The null hypothesis of no
cointegration is Hy : ¢ = 0, and the alternative hypothesis is H : ¢ < 0. Given a consistent estimator
& for a, the conventional EG cointegration test has been constructed from the estimated Dickey and
Fuller (1979, hereafter: DF) equation,

Ay~ &X) = ¢y — &' Xio)) + e, 2.2

where e, are a white noise series. If we let &, = y;, — &'X,, then the formula (2.2) can be represented
by the following formula

Aﬁ, = ¢i)t + & (2.3)
and the conventional DF test statistic is

¢ _ DA YAk _ Tiibd, ’ 24)

(@) szt efza,)

where ¢ = ¥ &1 Al 502 |, se(@) = (X #% )72 and 6% = 1/(T - 2) L@, — pit—1)*. All summa-
tions ), are from 2 to T unless otherwise noted.

We consider the new tests based on sign instrumental variable, sign(u,—;). The sign IV estimator
for ¢ is

Ipr =

By = 2 sign(@- A, _ 3 sign(@,- )AL 2.5)
2 sign(@y-1 ), 21|

and the standard deviation of @,y is

(2.6)

where & = 1/(T - 2) Y.(# — &f1,1)* and & = ¥, &1,/ 3, #* . Therefore the new test statistic can be
constructed as follows

. érv 1 L .
ty = — = sign(it,_1 A 2.7
v se (¢]V) & \/T Z t—1 t

Since A#; in the formula (2.7) is not a f-measurable, the asymptotic of ¢}, can not have the standard
normal distribution. In order to reach the f-measurable property, we employ the recursive estimator for
a of So and Shin (1999b). They introduce the recursive mean adjustment, show several nice merits,
and apply to unit root tests. Also, they note that the recursive estimator not only brings a nice property
in asymptotic null distribution for the test statistic but also improves the power performance of a unit
root test. We replace Ait, = A(y;, — &'X;) by

Aitgy-y = Ayi, — @,_ | AX,, (2.8

where @ = (X/X)" '\ XY, X, = (X1, Xa,..., XY and Y, = (1.1, 1.2, - - ., Y1) - The recursive estima-
tor, &, just uses data up to time 7, and this allows the test statistic to become z-measurable. In this
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context the sign IV cointegration test statistic is

1 T
iy = —— sign(it,_1 YAl 2.9)
v &ﬁt;l ol tl—1
1 T
= — sign(it,_1 ) {Ay;, —-&_AX,}. (2.10)
5"/7,:[,2_1 gnii—q { 1 —1 t}

The proposed test statistic, ¢y, has the standard normal limiting distribution that is free from the
number of variables.

Theorem 1. Consider model (2.1) then we have 1y LN (0, 1) as T — oo, under the null hypothesis
Hy:¢=0.

Proof: First we need to show that the ¥ sign{fi,—1)Afiy,—; is a martingale. Let z, = 2 sign(it,.) JAfiy-1
and £, be the o-field generated by the data up to time point #. Then we have

T+l
E(GzralLr) = E[ Z Sign(ﬁt—l)Aﬁt{z—ﬂlT}

t=p-1

T
= E( Z sign(i;..; )Ady- + Sign(ﬁT)AﬁT+1|7'|-£7']
t=p-1
T
= Z sign(it,_1 )Aiiy—_; + sign(ir)E (AdirsyrLr)
te=p-1 :

= ZT

The last equation comes from E(Afip, riLr) = E{(Ay 741 — 838Xr 1l Lr) = E(QAy 71l Lr) + @7E(A
XrlLr) = 0. The E(Ay; r+1|Lr) and E(AX7.1]Lr) are 0 because Ayr.; and AXy, are i.id. with
mean 0. Since we have E(z7.1}Lr) = z7, the z; is a martingale. Now the martingale central limit
theorem can be applied to get the limiting distribution. Therefore we complete the proof to show

fiy -5 N(©, 1). QED. O

3. Simulation

We generate the {y,} from the following model as in Kremers et al. (1992)

p
Ayy = ZaiAyi,t +o01—y2— =Y +e& t=1,....T,
=2

AYir:‘fizs izz'w-‘apv

where X, is a vector with p exogenous variables, (&,&2,,....&p) ~ Npy(0,, L) where the 0, =
(0,...,0Y is a p x 1 vector and £ = Diag(c?,03,...,0%) is a p X p diagonal matrix. We are in-
terested in testing the hypotheses that Hy : ¢ = 0 versus H; : ¢ < 0. If we reject the null hypothesis,
then the data has strong evidence of cointegration.
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Table 1: Rejection Frequencies(%), ¢ = 0.0

(a. )
10,1 (0.5, 6) (0.5, 16)

T P Sign IV EG Sign IV EG Sign IV EG

A. Rejection frequency at the S percent critical value
1 4.9 5.3 52 5.5 5.1 52
20 2 5.0 52 5.3 5.4 5.0 5.1
3 4.8 53 52 5.3 49 4.9
1 5.1 52 5.1 5.4 5.0 5.1
100 2 52 5.0 49 5.6 5.1 52
3 5.1 5.1 4.9 53 52 5.1

B. Rejection frequency at the 1 percent critical value
1 12 1.1 11 1.3 12 12
20 2 11 1.1 1.2 1.2 09 1.3
3 1.0 1.0 1.1 13 1.0 1.1
1 1.0 1.0 1.3 1.1 12 1.1
100 2 0.9 11 1.1 12 13 12
3 1.0 1.1 1.1 1.2 11 13

Note: Tests for Hy : ¢ = 0 for model A(y;; — &' X)) = ¢(y1 -1 — & Xi-1) + e, @ = (@2, ... @p) and Xy = O2r, oo, Ypr)'s
Number of replications = 10,000.

Table 2: Rejection Frequencies(%), ¢ = —0.1

(2, 5)
(1.0, 1) 0.5, 6) (0.5,16)
T p Sign IV EG Sign IV EG Sign IV EG
A. Rejection frequency at the 5 percent critical value
1 12.01 11.55 17.55 12.31 14.32 11.98
20 2 10.77 9.72 14.67 10.65 12.34 9.61
3 8.90 7.64 10.22 8.33 10.57 7.91
1 39.10 37.00 38.96 38.51 36.54 37.52
100 2 25.11 23.70 29.51 25.15 27.89 25.10
3 18.95 17.85 12.50 19.83 15.91 18.77
B. Rejection frequency at the 1 percent critical value
1 3.71 2.44 3.62 278 3.31 2.58
20 2 3.10 221 3.38 2.99 3.13 237
3 2.87 2.07 271 2.13 2.93 2.84
1 9.16 8.55 9.83 9.13 9.02 8.22
100 2 9.01 8.32 9.52 9.17 8.90 8.50
3 8.53 7.88 9.11 8.16 8.19 8.10

Note: Tests for Ho : ¢ = 0 for model A(y;; — & X;) = ¢(y1,-1 — &' X)) + e @ = (a2, ..., @p) and Xy = O, oo i)'
Number of replications = 10,000.

Although the o;s can have different values, we let o; have identical value and let o; represent the
variances. And also we let the coeflicients «; are all identical and let ; represent the coefficients. And
therefore, we have six parameters to set which are ¢, a;, o, 0, p and T. Without loss of generality,
0 = 1 and let s = 0;/0 that s=0; in this case. Kremers et al. (1992) note that in many empirical
studies, @ ~ 0.5 and ¢ ~ —0.1, with 62 > o2 fori = 2,..., p. In considering their findings, we set
¢ = 0.0 for the size and ¢ = —0.1 for the power. We also set (a;, s) = [(1.0, 1), (0.5, 6), (0.5, 16)].
We experiment with cases of T = 20 and 100. We set p = 2, 3 and 4 to examine whether the tests
are sensitive to the number of variables. Let the initial values of each y; be fixed. The number of
replications per experiment is N = 10,000, the first 20 observations of each replication is discarded in
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order to attenuate the effect of initial values, and the y,, ..., y,’s are generated for each replication.

Table 1 and 2 show rejection probabilities(%) under the null and the alternative hypothesis, re-
spectively.

From the table 1, we can see that the sizes of both tests are stable under all cases. From the table
2, the less the number of variables, the more the power for both tests. Our tests are locally more
powerful than the EG test except some cases with 7 = 100 under the 5% significance level. When the
time span is only 20, the proposed tests show better property in powers. This is a superior aspect of
our test because data having small numbers of observations is more likely to assess in practice.

4. Conclusion

We propose sign IV cointegration tests. Our tests are based on the instrumental variables, signs of the
regressors. The limiting null distributions of the test statistics are the standard normal distribution and
are free from the number of variables. According to the Monte-Carlo simulation resuits, the proposed
tests are locally more powerful than those based on the usual #-type tests especially for the data with
the short time span such as 7 = 20.
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