참고문헌
- Araujo, A. and Gine, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley & Sons, New York
- Billingsley, P. (1968). Convergence of Probability Measures, John Wiley & Sons, New York
- Bosq, D. (2000). Linear processes in function spaces, Lectures Notes in Statistics, 149, Springer, Berlin
- Brockwell, P. J. and Davis, R. A. (1987). Time Series, Theory and Method, Springer, Berlin
- Burton, R. M., Dabrowski, A. R. and Dehling, H. (1986). An invariance principle for weakly associ-ated random vectors, Stochastic Processes and Their Applications, 23, 301-306 https://doi.org/10.1016/0304-4149(86)90043-8
- Esary, J., Proschan, F. and Walkup, D. (1967). Association of random variables with applications, The Annals of Mathematical Statistics, 38, 1466-1474 https://doi.org/10.1214/aoms/1177698701
- Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables, with applications, The Annals of Statistics, 11, 286-295 https://doi.org/10.1214/aos/1176346079
- Kim, T. S. and Ko, M. H. (2008). A central limit theorem for the linear process generated by associated random variables in a Hilbert space, Statistics & Probability Letters, 78, 2102-2109 https://doi.org/10.1016/j.spl.2008.01.079
- Kim, T. S., Ko, M. H. and Han, K. H. (2008). On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space, Statistics & Probability Letters, 78, 2110-2115 https://doi.org/10.1016/j.spl.2008.01.082
- Ko, M. H. (2006). Functional central limit theorems for multivariate linear processes generated by dependent random vectors, Communications of the Korean Mathematical Society, 21, 779-786 https://doi.org/10.4134/CKMS.2006.21.4.779
- Ko, M. H., Kim, T. S. and Han, K. H. (2009). A note on the almost sure convergence for dependent random variables in a Hilbert space, Journal of Theoretical Probability, 22, 506-513 https://doi.org/10.1007/s10959-008-0144-z
- Ko, M. H., Ryu, D. H. and Han, K. H. (2006). A central limit theorem for moving average process with negatively associated innovation, International Mathematical Forum, 1, 492-502
- Matula, P. (1992). A note on the almost sure convergence of sums of negatively dependent random variables, Statistics & Probability Letters, 15, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
- Newman, C. M. (1984). Asymptotic independence and limit theorems for positively and nega-tively dependent random variables, Inequalities in Statistics and Probability IMS Lecture Notes-Monograph Series, 5, 127-140 https://doi.org/10.1214/lnms/1215465639
피인용 문헌
- A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION vol.32, pp.1, 2010, https://doi.org/10.5831/HMJ.2010.32.1.091