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Abstract
Fractional Brwonian motion(fBm) has properties of behaving tails and exhibiting long memory while remain-
ing Gaussian. In particular, it is well known that interest rates show some long memories and non-Markovian. We

present no aribitrage condition for HIM model under the multi-factor fBm reflecting the long range dependence
in the interest rate model.
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1. Introduction

It is well-documented that economic and financial time series such as ouput growth, asset prices and
interest rates have long range dependence. Since Mandelbrot (1971), many authors have studied long
memory issues in financial time series. The researches on the applicatons of fBm to price assets,
however, are quite a few compared with the empirical studies. This is because of no preventing
arbitrage opportunities in fBm economy. To overcome these difficulties, a new type of asset price
modelling or no arbitrage condition under fBm is introduced by Oksendal (2007). This approach
adopts Wick integral rather than Ito Integral in defining self-financing portfolio. This is called ‘Wick
No Arbitrage’. Although Bjork and Hult (2005) pointed out some problems of no arbitrage in Wick
sense, the modelling by fBm still has strong advantages of explanning the long memory properties of
financial time series. This paper studies no arbitrage condition in Wick sense for the multi-factor HIM
model reflecting the long range dependence in the interest rate model. It is well known that interest
rates show some long memories and non-Markovian; see, for example, Cajueiro and Tabak (2007).
Fractional Brownian motion(fBm) is a proper candidate for modelling these empirical phenomena.
Following the framework of Oksendal (2007), we investigate multi-factor HIM interest rate theory
and obtain the no arbitrage condition.

2. fBm, Wick Integral and Malliavin Calculus
2.1. Some definitions

Before we present the main results, we introduce some properties of fBm, Wick integral and Malliavn
calculus for fBm, which are pivotal roles of deriving multi-factor fBm HIM model. The details are
refered to Bender (2003), Oksendal (2007), Biagini and Oksendal (2003, 2004) and Duncan et al.
(2000). The one-factor HIM model is explained in Rhee and Kim {(2008).
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We denote by (B!7) the one parameter fBm with Hurst parameter H € (0, 1). fBm is the Gaussian
process BY = By(t,w), t € R, w € Q satisfying

B =E[B!] =0,
for all  and
E[B!Bl| = % [1sP 162 — 1s = 2],

where the expectation is taken under the probability measure P and (€, ) is a measurable space.
Note that fBm is not a semimartingale except that H = 1/2. So we cannot use the theory of stochastic
calculus for semimartingale on BY. In this paper, we use Wick-Ito integral as studied by Oksendal
(2007). For F(.,.) : R x Q — R such that HFIli2 < o0, where

IFII%, :E[ f f F(s)F(1)$(s, t)dsdt+( f D!F(d )]
R JR R

#(s, 1) = HQH - 1) |s — 72, % <H<1

and D‘fF () denotes the Malliavin ¢—derivative of F, the Wick integral is denoted by

T
f F(t,w)6B".
0

The above integral is so called Skorohod or Wick-Ito integral, and we may denote this by

T T N-1
f F(t,w)dB! = f F(t,w)6B = lim ZF(tk) o (By,, — By),
0 0 Atp—0 =

where o denotes the Wick product. More details on Wick product are explained in Bender (2003),
Oksendal (2007), Biagini and Oksendal (2003, 2004). Note that

T T
E[ f F(t, w)dB{’] = E[ f F(, w)éB,”] =0,
0 0

if the integral belongs to L*(P).

2.2. Malliavin calculus for fBm

Let B = (B (1), ..., BI"(9) t € R, w € Q be n-dimensional fBm with Hurst vector H = (Hj, ..., H,)
€ (1/2,1)". Note that BkH"'(.), k = 1,...,n, are independent. This implies that we consider £ as a
product Q = Qp X --- X Q, of the copies {; of some Q. Then F is the o-algebra generated by
{Bfk(s); seR* k=1,2,...,n} and ¥, is the o—algebra generated by {BkH"(s);O <s<tk=12,...,
n}. If f: R* xQ — Ris F-measurable, 1 < k < n, then for some u > 0, we set Malliavin calculus
for fBm as

Dy, ( fo ﬁ(s)dBﬁH’(s)) = fo DY, fi(s)dB"(s) + 6u fo FlS)ilt, s)ds,
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where
6ij={0’ {f{qt].’
1, ifi=j
and
Hi(t, s) = HiQH — Dt — o2, k=1,2,...,n

In the next section, we set up multi-fatcor fBm HIM model and give main results. For allowing the
correlation structures as in Biagini and Oksendal (2003), this paper defines new stochastic processes
as

n

dX,(t) = ZpikdBkH“(t), i=1,2,....n

=1
Then the covariance structures are given by
n

E[X:0X;0] = Y ElpwouBf 7]

i

P
=0l

PP jkl‘w" .
-1

-

3. HIM Representation by Multi-Factor fBm
Theorem 1. Define the multi-factor HIM model as

f@&.T)= f(Q, T)+f(x(s, T)ds-l—Zf oi(s, TYdX(s),
0 = Jo

where
n
Xty = ) pudB(), i=12....n
k=1
Here (BkH" (t)) is n-factor independent fBm, and a, 0; € L?,i = 1,.. ., n, are all deterministic functions.

Then for the multi-factor fBm type HIM no arbitrage condition is
L ap, (t, T}D Y ap! (t T)
)= 33y T S P D
i=1 j=1 k=1 i=1 k=1

and if the equivalent martingale measure with respect to P is Q, then the density process is

aQ )

—5 =& =exp|- ZZplk(s T)dBl%(s) - ZZptk(s, )0, (i, T)bi(s, w)dsdu |,

=1 k=1 i=1 k=

where

T
Pt T) = ppoi(t,T) = Pa‘kf oi{(s, wydu.
I
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Proof: From the following multi-factor forward rate
'3 n !
f(t5 T) = f(o’ T) + f Q’(S, T)ds + Z f O'i(S, T)dX,(S),
0 = Jo

we can obtain the zero bond as follows :

T T n t T
P(t,T) =exp (- f fO, s)ds — j: f a(s, u)duds — Z j(; f oi(s, u)dudX,»(s)].
t t =1 t

Then the dynamic of the discounted zero bond price is given by

T ! n !
Z(t, T)=exp(—f 1, s)ds—fa/(s, T)ds—Zfo;(s, T)dXi(s)]
0 0 ~Jo
T ! n
= exp| - 0,9ds— | (s, Tyds- Y Y0,
exp( fof( $)ds foa(s Yds 21 (t))

where

ay,(1) = o, T)AX(r) = 7, 7)) pud B (0).
k=1

Or we can re-express Y;(¢) as following:

n

avi(t) = Y pit, AB®), i=12,....n,

k=1
P&, T) = pyci(t, T).
Then by Ito lemma for fBm,

dZZ((Z’TT)) =- [a’(t, T)- anzn:ip,fk(t, T)Dij(t)] dt - Z":zn:p;k(t, T)dB (9),

i=1 j=1 k=1 i=1 k=1

where .
DlY;(n = fo 048, T)gu(s, Dds,  for all k.
We define the risk neutral fBm as l
dBI(t) = yidt + dB*(Q)1), fork=1,2,...n,
where Q is the equivalent martingale measure with respect to P. Then the following relationship holds
€D = Y Y SR D00 - 3 Pt T
i=t j=1 k=1 i=1 k=1

where v, k = 1,...,n, are the market prices of risk. For the market prices of risk y; independent of
any maturity T, we obtain the following multi-factor fBm type HIM no arbitrage condition:

a(t T) = Zzzaptk(t T)D Y; (t) _ Zzapk(t T)

i=1 j=1k=1 i=1 k=1
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Then the dynamic of the zero bond price under @ is given by

dzZ(EtTT)) ( 1) - ZZEON T)DYY; (t))dt ZZp,k(t T) (vt + dBI(Q)(1))

i=1 j=1k=1 i=1 k=1

= -ZZp,k(t T)dB(Q)(0).

i=1 k=1

Following the method of Eberlein and Raible (1999), we can express the zero bond as

exp (-Eéélp,’-ku, T)dB,'f"(Q)(S))

P, T)= PO, T)exp ( f rsds) — s
0 EQ {exp (“ IN akglpgk(s, T)dBkH"(Q)(S))]

where the expectation E? [.] is taken under the measure Q. From this, the well-known density process
under the multi-factor fBm can be obtained in the following form:

exp (— Iy ;1 élp;k(s, T)dB™ (s))

€
E [exp (- IN PPIAC T)dBfk(s))]
¢ N n
= exp[ f D plls, TdBf(s) - f f Zzp,k(s T, (1, T)qbk(s,u)dsdu)
i=1 k=1 i=1 k=1
Note that the Malliavin terms disappear because p, is the deterministic function. O

4. Two-Factor fBm HJM
This section gives a practical example, which can be applied for pricing bond option or swaption,

FEzxample 1. Define the two-factor forward rate as

f@,T) = f(0,T)+ f als, Tyds + f o(s, THdX (5) + f (s, T)dX,(s).
0 0 0

By the definition of the zero bond and Fiibini,

T T ¢ T ¢ ~T
P(t, T) = exp (— f f0,s) ~ j(: f als, u)duds — fo f o (s, wdudX,(s) - j(; f (s, u)dudXz(s)).
t 1 t H

The dynamic of the discounted zero bond price is given by
T ¢ ! ¢
Z(t,T) = exp (— f [0, 5)ds - f & (s, T)ds - f oy (s, TYdX(s) - f o5 (s, T)dXz(s))
0 0 0 0

T '
= exp (~f [, s)ds — f &' (s, Tds - Y1(t) - Yg(t)).
0 0
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Then
dY,() = (&, T)dX, () = 7(t, T) (pu1dB} (1) + pr2dBy? (1))
= p} dB(t) + pl,dBY (1)
and
dYy(t) = oy(t, TXo() = o5(t, T) (o1 d B () + prad By (1))
= py dBI (1) + ph,d B (1),
We set up
2
Yo = Y pi(e, B ®), - i=12,
k=1
where
p;k(ts T) = pika-;(t7 T)
Then by Ito lemma for fBm
dz(t,T) 2 &
2 =~ (a0, T) - puDY1(0) - puDyYa(0) di = > > ply(t, TYABM (1),
201) i=1 k=1
where

i3
DY) = f Pials, T)e(s.0ds, k=1,2.
0

No arbitrage condition for the two-factor model is

ap, DIY1(0) . 6p22D¢Y2(t) ii p; (s T)
oT

a(t,T) = (

k=1 i=1

As in the multi-factor case, we define the change of measure as
dB (1) = yedt + dBP(Q)(®), fork =1,2.

Then the zero bond price is given by

PUT)=POT) eXpU;s ds)expefo‘(p',1<s,T>+p'21(s,T))dBE”(ZQ)(s)— fot(P'u(S,T}ho'zz(s,T))dBf(Q)(S)).
0 EQ [exp ( fo’kgl ;1 P4, T)dBka(Q)(s))]

The density process is given by

exp(= [ (04 (. 1) + 3y (. 1) dBY @) — [ (P15, T) + ply(s, T))dBl(s))

B ;22
EQ [exp ( A kgligl 055, T)dBfk(s))]
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5. Conclusion

This short paper demonstrates no arbitrage condition for the HIM under the multi-factor fBm. It is
well-known that HIM framework has an advantage of pricing and calibrating zero bonds and related
financial products. This paper adopts Wick Integral for keeping Oksendal type of no arbitrage which
is called Wick no arbitrage. We also give a two-factor example. The two-factor model can be applied
for pricing bond option or swaption, which is left as a further study.
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