다양한 농도의 카본블랙을 함유하는 폴리스티렌 및 폴리뷰틸메타크릴레이트 복합체 입자의 유동성

Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black

  • 발행 : 2009.09.30

초록

1.0 wt% 소수성실리카를 안정제로 하는 현탁중합에 의하여 $75^{\circ}C$에서 개시제의 농도를 변화하며 합성한 폴리스티렌 (PS) 및 폴리뷰틸메타크릴레이트 (PBMA) 입자의 점도를 모세관 레오미터 (capillary rheometer)를 이용하여 측정하였다. 중량평균분자량이 66,500 g/mol인 PS 입자는 $190^{\circ}C$에서 측정한 경우 낮은 전단속도에서는 뉴톤 (Newtonian) 거동을 나타내었다. PS 입자의 경우 분자량이 증가할수록 전단속도 전 영역에서 전단 묽어짐 (shear thinning) 거동을 보였다. PBMA 입자는 $170^{\circ}C$에서 점도를 측정하였으며 중량평균분자량이 156,700 g/mol 인 경우 낮은 전단속도에서만 뉴톤 거동을 나타내었다. 분자량의 증가에 따라 전단 묽어짐 거동이 관찰되었으며, 이러한 변화의 형태는 PS 입자와 유사하였다. 카본블랙을 충전제로 합성한 고분자 복합체 입자의 전단점도는 PS 및 PBMA 둘 다 $170^{\circ}C$에서 측정하였다. PS 및 PBMA 복합체 입자의 점도변화는 카본블랙의 증가에 따라 점진적으로 증가하였으나, 충전제의 증가에 따른 점도의 증가는 분자량의 증가 효과에 비교하여 미약하였다. 내부혼합기를 이용하여 제조한 카본블랙을 함유하는 PS 복합체의 점도변화는 현탁중합법으로 합성한 카본블랙을 함유하는 PS 복합체 입자의 점도변화에 비하여 작았으며 이는 향상된 분산으로 인하여 발생한 것으로 추정된다. 이 실험에서 선택한 분자량 및 카본블랙의 농도에서 yield 거동은 관찰되지 않았다.

We measured shear viscosity of polystyrene (PS) and poly(butyl methacrylate) (PBMA) particles, with a capillary rheometer, prepared by suspension polymerization with 1.0 wt% hydrophobic silica as a stabilizer by varying the initiator concentration at $75^{\circ}C$. PS particles with weight average molecular weight of 66,500 g/mol displayed a Newtonian behaior at low shear rates at $190^{\circ}C$. With increasing molecular weight, PS particles showed shear thinning over the entire range of shear rates. For PBMA particles, steady shear measurement was carried out at $170^{\circ}C$. PBMA particles with weight average molecular weight of 156,700 g/mol showed a Newtonian behaior only at low shear rates. PBMA particles also showed shear thinning with an increase in molecular weight and its pattern similar to that of PS. When carbon black was incorporated into PS and PBMA polymers, steady shear measurement was conducted at $170^{\circ}C$. An increase in carbon black concentration in PS and PBMA composite particles exhibited a progressive increase in shear viscosity. The increase in shear viscosity, however, was less pronounced compared to an increase as a function of molecular weight. Preparing PS composites containing carbon black by internal mixing resulted in an increase in shear viscosity. Its increase, however, was found to be less than that shown in PS composite particles. We speculate that this is caused by an enhanced dispersion of carbon black particles with an internal mixer. Yield behavior was not observed in any of the samples we selected in this experiment.

키워드

참고문헌

  1. M. Alexandre and P. Dubois, 'Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials', J. Mater. Sci. Eng., 28, 1 (2000) https://doi.org/10.1016/S0927-796X(00)00012-7
  2. J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, J. Vazquez-Torres, L. F. Garfias-Mesias, and D. R. Paul, 'Thermal degradation of commercially available organoclays studied by TGA-FTIR', Thermochimica Acta, 457, 92 (2007) https://doi.org/10.1016/j.tca.2007.03.008
  3. D. B. Zax, D. K. Ynag, R. A. Santos, H. Hegemann, E. P. Giannels, and E. P. Manias, 'Dynamical heterogenity in nanoconfined polystyrene chains', J. Chem. Phys., 112, 2945 (2000) https://doi.org/10.1063/1.480867
  4. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, . R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, 'Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites', J. Polym. Sci., Part B: Polym. Phys., 40, 852 (2002) https://doi.org/10.1002/pola.10169
  5. C. Zhao, H. Qin, F. Gong, M. Feng, S. Zhang, and M. Yang, Mechanical, 'Thermal and flammability properties of polyethylene/clay nanocomposites', Polym. Degradation and Stability, 87, 183 (2005) https://doi.org/10.1016/j.polymdegradstab.2004.08.005
  6. S. Hambir, N. Bulakh, and J. P. Jog, 'Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic Mechanical Behavior', Polym. Eng. Sci., 42, 1800 (2002) https://doi.org/10.1002/pen.11072
  7. S. Gu, J. Ren, and Q. Wang, 'Rheology of poly(propylene)/clay nanocomposites', J. Appl. Polym. Sci., 91, 2427 (2004) https://doi.org/10.1002/app.13403
  8. J. Shen, G. Ji, B. Hu, and Y. Huang, 'Effect of filler size and surface treatment on impact and rheological properties of wollastonite-polypropylene composite', J. Mater. Sci. Lett., 12, 1344 (1993) https://doi.org/10.1007/BF00241702
  9. Z. Demjen, B. Pukanszky, and J. Nagy, 'Evaluation of interfacial interaction in polypropylene/surface treated CaCO$_3$ composites', Composites, 29A, 323 (1998) https://doi.org/10.1016/S1359-835X(97)00032-8
  10. G. N. Jimenez, N. Ogata, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of poly ($\varepsilon$-caprolactone)-clay blend', J. Appl. Polym. Sci., 64, 2221 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6
  11. C. A. Wah, L. Y. Choong, and G. S. Neon, 'Effects of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled propylene', Euro. Polym. J., 36, 789 (2000) https://doi.org/10.1016/S0014-3057(99)00123-8
  12. T. D. Lam, T. V. Hong, D. T. Quang, and J. S. Kim, 'Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO$_3$/polypropylene nanocomposites', Mat. Sci. Eng. A, 501, 87 (2009) https://doi.org/10.1016/j.msea.2008.09.060
  13. P. Ghosh and A. Chakrabarti, 'Effect of incorporation of conducting carbon black as filler on melt rheology and relaxation behavior of ethylene-propylene-diene monomer (EPDM)', Euro. Polym. J., 36, 607 (2000) https://doi.org/10.1016/S0014-3057(99)00081-6
  14. M. Park and R. Salovey, 'Rheological Behavior of Low Molecular Weight Polystyrene Composites Containing Monodisperse Crosslinked Polystyrene Beads', Polym. Comp., 20, 534 (1999) https://doi.org/10.1002/pc.10377
  15. M. P. Grosvenor and J. N. Staniforth, 'The effect of molecular weight on the rheological properties of poly($\varepsilon$-caprolactone)', Inter. J. Pharm., 135, 103 (1996) https://doi.org/10.1016/0378-5173(95)04404-3
  16. A. Lazaridou, C. G. Biliaderis, and V. Kontogiorgos, 'Molecular weight effects on solution rheology of pullulan and mechanical properties of its films', Carbohydrate Polym., 52, 151 (2003) https://doi.org/10.1016/S0144-8617(02)00302-8
  17. J. He, B. Yan, S. Wang, Y. Zeng, and Y. Wang, 'The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystals', Eur. Polym. J., 43, 2745 (2007) https://doi.org/10.1016/j.eurpolymj.2007.03.030
  18. S. C. Tsai and B. Viers, 'Effects of liquid polarity on rheology of noncolloidal suspensions', J. Rheol., 31, 483 (1987) https://doi.org/10.1122/1.549934
  19. S. Peeterbroeck, L. Breugelcuans, M. Alexandre, J. Bnagy, P. Viville, R. Lazzaroni, and P. Dubois, 'The influence of the matrix polarity on the morphology and properties of ethylene vinyl acetate copolymers-carbon nanotube nanocomposites', Comp. Sci. Tech., 6, 1659 (2007) https://doi.org/10.1016/j.compscitech.2006.07.001
  20. M. Park, 'Preparation of polymer beads by suspension polymerization with hydrophobic silica as a stabilizer in aqueous solution', Polymer(Korea), 30, 498 (2006)
  21. J. Moon and M. Park, 'Preparation of poly(butyl methacrylate) composite beads containing carbon black by suspension polymerization', Elastomer, 43, 157 (2008)
  22. J. Brandrup and E. H. Immergut, 'Polymer Handbook 3rd ed.', p. II-70 & 75, J. Wiley & Sons, New York 1989
  23. L. Sun, M. Park, and R. Salovey, 'Model filler polymers VII. Flow Behavior of Polymers containing monodisperse crosslinked polymeric beads', Polym. Eng. Sci., 32, 777 (1992) https://doi.org/10.1002/pen.760321204