아크릴 고무의 합성과 물성에 대한 연구

A Study on Synthesis and Properties of Acrylic Rubber

  • 조을룡 (한국기술교육대학교 응용화학공학과) ;
  • 이기문 (한국기술교육대학교 응용화학공학과)
  • Cho, Ur-Ryong (Department of Appied Chemical Engineering, Korea Institute of Technology and Education) ;
  • Lee, Ki-Mun (Department of Appied Chemical Engineering, Korea Institute of Technology and Education)
  • 발행 : 2009.09.30

초록

n-Butyl acrylate, n-butyl methacrylate, acrylonitrile, glycidylmethacrylate, and allyl methacrylate를 사용하여 유화중합에 의해서 아크릴 고무를 합성하였다. 가교단량체의 첨가량을 일정하게 고정시킨 후 주단량체 중 acrylonitrile을 변량시켰을 때 중합체의 Tg가 acrylonitrile의 증가에 따라 증가하면서 무니 점도, 경도(Shore A), 인장강도가 증가하였다. 신장률은 acrylonitrile의 증가에 따라 체인의 유동성이 감소하면서 감소하였다. 가교 단량체인 glycidylmethacrylate의 순수한 중합체의 Tg는 약 $56^{\circ}C$로 중합 시 첨가량이 증가하면 중합물의 Tg는 증가하고, 무니 점도, 경도, 인장강도도 증가하며 신장율은 감소하였다. 이는 rheometer의 측정 결과 glycidylmethacrylate의 증가에 의한 가교밀도의 증가에 기인하는 것으로 판단되었다.

The acrylic rubber was synthesized by emulsion polymerization using n-butyl acrylate, n-butyl methacrylate, acrylonitrile, glycidylmethacrylate, and allyl methacrylate. When the contents of acrylonitrile were increased at fixed amount of crosslinking monomers, the Tg of polymers was increased with the contents of acrylonitrile, Mooney viscosity, hardness, and tensile strength also were increased. But the elongation was decreased due to the reduction of chain flexibility. The addition of the monomer for crosslinking, glycidylmethacrylate whose Tg is $56^{\circ}C$ resulted in the increased Tg of the polymer, and increased Mooney viscosity, hardness, and tensile strength, but the elongation at break was decreased with the glycidylmethacrylate contents. It was shown that this phenominon was attributed to the increment of crosslinking density by glycidylmethacrylate through the measurement of rheometer.

키워드

참고문헌

  1. N. C. Baek et al., 'Rubber Materials & Processing Technology', 1st Ed., p. 7-9, 54, 55, The Rubber Society of Korea, 2008
  2. D. R. Bassett and K. L. Hoy, 'Nonuniform Emulsion Polymerization in Emulsion Polymers and Emulsion Polymerization', D. R. Bassett, and A. E. Hamielec, Eds., ACS Symp, Ser, No. 165, p. 371-387 (1981)
  3. L. A. Goettler, K. R. Richwine, and F. G. Wille, 'The Rheology and Processing of Olefin-Based Thermoplastic Vulcanizates', Rubber Chem. Technol., 1448, 55 (1982)
  4. W. Kim, 'Recent Rubber Industrial Chemistry', p. 11-19, 133, Sunjin Cultural History, 2006
  5. J. A. Brydson, 'Rubber Materials and Their Compounds', p. 221-236, Elsevier Science Publishers LTD., New York, 1988
  6. D. C. Blackley, 'Synthetic Rubbers : Their Chemistry and Technology', p. 279-283, Applied Science Publishers, New York, 1983
  7. J.-S. Chung et al., 'Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)', Korea Polymer Journal, 9, 2, pp 122-128 (2001)
  8. C. Y. Park, 'Cure Characteristics and Dynamic Mechanical Properties of Acrylic Rubber and Epoxidized Natural Rubber Blend', J. Ind. Eng. Chem., 7, 212 (2001)
  9. G. Odian, 'Principle of Polymerization', 3rd Ed., p. 335-352, Wiley Interscience, New York, 1991
  10. M. S. El-Aasser, 'Emulsion polymerization', p. 1-55, Kluwer Academic Publishers, New York, 1990
  11. J. L. Gardon, 'In Emulsion Polymerization', p. 255, Wiley-Interscience, New York, 1982
  12. P. A. Lovell and M. S. El-Aasser, 'Emulsion Polymerization and Emulsion Polymers', p. 3-53, John Wiley and Sons, New York, 1997
  13. S.-D. Seul and J.-M. Lim, 'Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer', Polymer(Korea), 28, 135 (2004)