Self-healing Elastomers As Dream Smart Materials

꿈의 스마트 재료로서 자기치유 탄성체

  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shin, Nam-Ho (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Jung-Kyu (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Hur, A-Young (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Li, Haiqing (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
  • 김일 (부산대학교 고분자공학과) ;
  • 신남호 (부산대학교 고분자공학과) ;
  • 조정규 (부산대학교 고분자공학과) ;
  • 허아영 (부산대학교 고분자공학과) ;
  • 이해청 (부산대학교 고분자공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Published : 2009.09.30

Abstract

Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

감응 성질을 탑재한 복잡한 고분자 재료가 시장에 등장하기 시작하고 있다. 가역적이며 비공유성인 상호작용을 사용하여 이와 같은 감응형 재료를 설계하는 예가 많아지고 있다. 최근에 개발된 수소결합 단위가 이와 같은 설계 기법을 극으로 치닫게 하고 있다. 단량체를 이어주는 힘이 수소결합뿐인 초분자 고분자는 온도나 용매의 변화에 기계적 성질이 감응되는 재료를 형성한다. 본 보문에서는 수소결합으로 이루어진 초분자 고분자가 자기치유 재료로 사용되는 예를 소개한다. 재생 가능한 고무성 재료를 합성하는 일은 그리 매력적이라 할 수 없다. 그러나 상온에서 접착제를 사용하지 않고도 손상을 반복해서 치유할 수 있는 고무 재료는 우리의 상상의 나래를 펼치게 하는 재료이다. 외부의 간섭 없이 환경적 자극에 비선형적으로 감응하여 파손된 부분을 치유시키는 재료인 자기치유 재료는 여러 가지 첨단공학 계에서 엄청난 가능성을 가진 재료라 할 수 있다.

Keywords

References

  1. M. Yoshida and J. Lahann, 'Smart Nanomaterials', ACS Nano, 2, 1101 (2008) https://doi.org/10.1021/nn800332g
  2. A. Alexeev, W. E. Uspal, and A. C. Balazs, 'Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes', ACS Nano, 2, 1117 (2008) https://doi.org/10.1021/nn8000998
  3. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, 'Self-healing and Thermoreversible Rubber from Supramolecular Assembly', Nature, 451, 977 (2008) https://doi.org/10.1038/nature06669
  4. G. H. Koch, M. P. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, Corrosion Costs and Preventive Strategies in the United States, FHWA-RD-01-156, U. S. Department of Transportation, Federal Highway Administration, Washington D.C., 2001
  5. S. H. Cho, S. R. White, and P. V. Braun, 'Self-Healing Polymer Coatings', Adv. Mater., 21, 645 (2009) https://doi.org/10.1002/adma.200802008
  6. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, 'Autonomic Healing of Polymer Composites', Nature, 409, 794 (2001) https://doi.org/10.1038/35057232
  7. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, 'Self-healing Materials with Microvascular Networks', Nature Mater., 6, 581 (2007) https://doi.org/10.1038/nmat1934
  8. K. Nagaya, S. Ikai, M. Chiba, and X. Chao, 'X. Tire with self-re pairing mechanism', JSME Int. J. 49, 379 (2006) https://doi.org/10.1299/jsmec.49.379
  9. P. Sonntag, et al. 'Biocide squirting from an elastomeric tri-layer film', Nature Mater. 3, 311 (2004) https://doi.org/10.1038/nmat1113
  10. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl1, 'A Thermally Re-mendable Cross-Linked Polymeric Material', Science, 295, 1698 (2002) https://doi.org/10.1126/science.1065879
  11. J. M. Lehn, 'Supramolecular Chemistry: Concepts and Perspectives', VCH, Weinheim, 1995
  12. R. F. M. Lange, M. Van Gurp, and E. W. Meijer, 'Hydrogenbonded supramolecular networks', J. Polym. Sci. Part A: Poly. Chem., 37, 3657 (1999) https://doi.org/10.1002/(SICI)1099-0518(19991001)37:19<3657::AID-POLA1>3.0.CO;2-6
  13. C. B. Pourcain and A. C. Griffin, 'Thermoreversible supramolecular networks with polymeric properties', Macromolecules, 28, 4116 (1995) https://doi.org/10.1021/ma00116a010
  14. B. Ghosh and M. W. Urban, 'Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks', Science, 323, 1458 (2009) https://doi.org/10.1126/science.1167391
  15. A. W. Bosman, R. P. Sijbesma, and E. W. Meijer, 'Supramolecular polymers at work', Mater. Today, 7, 34 (2004) https://doi.org/10.1016/S1369-7021(04)00187-7