반응표면분석 법을 이용한 Paracoccus sp.의 Astaxanthin 생산배지 최적화

Optimization of Medium for Astaxanthin Production by Paracoccus sp. Using Response Surface Methodology

  • 최종일 (한국원자력연구원 방사선과학연구소) ;
  • 이희섭 (한국원자력연구원 방사선과학연구소) ;
  • 최선강 (강릉과학산업진흥원) ;
  • 김재훈 (한국원자력연구원 방사선과학연구소) ;
  • 김진규 (한국원자력연구원 방사선과학연구소) ;
  • ;
  • 변명우 (한국원자력연구원 방사선과학연구소) ;
  • 이주운 (한국원자력연구원 방사선과학연구소)
  • Choi, Jong-Il (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Hee-Sub (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Seon-Kang (Gangneung Science Industry Bio Foundation, Republic of Korea) ;
  • Kim, Jae-Hun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Kyu (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Misawa, Norihiko (Kirin Holdings Co., Ltd.) ;
  • Byun, Myung-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Ju-Woon (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 발행 : 2009.06.29

초록

Paracoccus sp.의 astaxanthin 생산성 증가를 위해 반응표면 분석법을 사용하여 최적의 배지조성을 설계하였다. Paracoccus의 성장 배지인 Marine Broth와 modified Blaszczyk 배지를 사용하여 astaxanthin 생산성을 측정한 결과 각각 0.39 mg/L, 0.40 mg/L의 astaxanthin 농도를 보였다. Modified Blaszczyk 배지의 조성을 각각 변수로 두어 가장 많은 영향을 주는 성분을 알아본 결과 $MgSO_4$와 yeast extract로 확인되었다. 중심합성계획법에 따라 $MgSO_4$ ($0.397{\sim}4.621$ g/L), yeast extract ($2.879{\sim}7.121$ g/L)를 달리하였을 때, astaxanthin 생상성에 대한 회귀식의 $R^2$은 0.894로 나타났고, 이에 따른 최대 생산량에 0.925 mg/L로 예상되었으며 이때의 $MgSO_4$와 yeast extract의 농도는 각각 2.83과 7.02 g/L로 나타났다. 이에 대한 확인실험 결과 2.83 $MgSO_4$ g/L, 7.02 yeast extract g/L에서 1.021 mg/L의 astaxanthin이 생산되었으며, 배지의 최적화에 따라 250% 이상의 생산성 증가가 확인되어졌다.

This study was to optimize the medium components for astaxanthin production in Paracoccus sp. through surface response methodology. A screening test was first conducted on 5 medium components using a Plackett-Burman design, from which $MgSO_4$ and yeast extract were identified as the significant factors affecting astaxanthin production. These significant factors were optimized by central composite design of experiments and response surface methodology, as 2.83 g/L $MgSO_4$ and 7.02 g/L yeast extract, respectively. The expected astaxanthin concentration with these optimized medium compositions were 0.925 mg/L. In flask culture, the experimentally obtained concentration of astaxantin was 1.021 mg/L, where it had been 0.4 mg/L before optimization.

키워드

참고문헌

  1. Higuera-Ciapara, I., L. F$\'{e}$lix-Valenzuela, and F. M. Goycoolea (2006), Astaxanthin: A Reviεw of its Chemistry and Applications, Cri. Rev. Food Sci. Nutr. 46, 185-196 https://doi.org/10.1080/10408690590957188
  2. Johnson, E. A. and G. H. An (1991), Astaxanthin from microbial sources, Crit. Rev. Biotechnol. 11, 297-326 https://doi.org/10.3109/07388559109040622
  3. De Leenheer, A. P. and H. J. Nelis (1991), A review microbiol sources of carotenoid pigments used in foods and feeds, J. Appl. Bacterol. 70, 181-191 https://doi.org/10.1111/j.1365-2672.1991.tb02922.x
  4. Hussein, G., U. Sankawa, H. Goto, K. Matsumoto, H. Watanabe (2006), Astaxanthin, a Carotenoid with Potential in Human Health and Nutrition, J. Nat. Prod. 69, 443-449 https://doi.org/10.1021/np050354+
  5. Chumpolkulwong, N., T. Kakizono, S. Nagai, and N. Nishio (1997), Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine, J. Ferment. Bioeng. 83, 429-434 https://doi.org/10.1016/S0922-338X(97)82996-0
  6. Suh, I. S., H.-N. Joo, C.-G. Lee (2006), A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation, J. Biotechnol. 125, 540-546 https://doi.org/10.1016/j.jbiotec.2006.03.027
  7. Nishida, Y., K. Adachi, H. Kasai, Y. Shizuri, K. Shindo, A. Sawabe, S. Komemushi, W. Miki, N. Misawa (2005), Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2, 2'-$\beta$-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls, Appl. Environ. Microbiol. 71, 4286-4296 https://doi.org/10.1128/AEM.71.8.4286-4296.2005
  8. Tsubokura, A., H. Yoneda, and H. Mizuta (1999), Paracoccus carotinigaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium, lnt. J. Syst. Bacteriol. 49, 277-282 https://doi.org/10.1099/00207713-49-1-277
  9. Lee, J. H., Y. S. Kim, T. J. Choi, W. J. Lee, and Y. T. Kim (2004), Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium, lnt. J. Syst. Evol. Microbiol. 54, 1699-1702 https://doi.org/10.1099/ijs.0.63146-0
  10. Box, E. P., and R. Draper (1987), Empirical modelbuilding and response surface, New York: John Wiley & Sons
  11. Blaszczyk, M. (1993), Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans, Appl. Environ. Microbiol. 59, 3951-3953
  12. Plackett, R. L., and J. P. Bruman (1946), The design of optimum multifactorial experiments, Biometrica 33, 305-325 https://doi.org/10.1093/biomet/33.4.305
  13. Kim, Y. H., S. W. Kang, J. H. Lee, H. I. Chang, C. W. Yun, H. D. Paik, C. W. Kang, S. W. Kim (2006), Optimization of medium components for cell mass production of Saccharomyces cerevisiae JUL3 using response surface methodology, Korean. J. Biotechnol. Bioeng. 21, 479-483
  14. Yoon, S. J., W. S. Shin, G. T. Chun, Y. S. Jeong (2007), Optinrization of production medium by response surface method and development of fermentation condition for Monascus pilosus culture, Korean. J. Biotechnol. Bioeng. 22, 288-296
  15. Lee, G. D., J. E. Lee, J. H. Kwon (2000), Application of response surface methodology in food industry, Food and lndustry 33, 33-45
  16. SAS Institute, Inc. (1990), SAS User’s guide, Statistical Analysis Systems Institute, Cary, NC
  17. Pringsheim, E. G. (1966) Nutritional requirements of Haematococcus pluvialis and related species, J. Phycol. 2, 1-6 https://doi.org/10.1111/j.1529-8817.1966.tb04584.x