Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives

미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성

  • Lee, Eun-Yeol (Department of Chemical Engineering & Industrial Liaison Research Institute, Kyung Hee University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 이은열 (경희대학교 화학공학과 및 산학협력기술연구원) ;
  • 박성훈 (부산대학교 화학공학과)
  • Published : 2009.06.29

Abstract

Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

광학활성 styrene oxide는 친전자성반응, 친핵성반응, 산 염기반응, 산화 환원반응 등 다양한 반응을 유도할 수 있어 광학활성 중간체로 널리 사용될 수 있다. Styrene monooxygenase (SMO)를 생촉매로 이용하여 styrene의 side-chain 이중결합에 입체선택적으로 에폭사이드 링을 도입시켜 광학활성 styrene oxide 유도체를 제조할 수 있다. 다양한 기질 특이성을 가진 신규 SMO 생촉매 개발, 이상계 반응 시스템, in situ 분리 공정, multimeric oxygenase 효소발현 및 안정화 기술 개발, NADH 등 cofactor regeneration 등에 대한 연구개발이 활발히 진행되고 있어, 미생물유래의 SMO를 생촉매로 활용하는 광학활성 styrene oxide 유도체 제조 기술의 상업화가 기대된다.

Keywords

References

  1. F. Jamali (1993), Stereochemical pure drug: an overview, pp375-384, in Wainer, I. W. (eds.), Drug stereochemistry, Marcel Dekker, New York
  2. A. N. Collins, G. N. Sheldrake, and J. Crosby (1992), Chirality in industry, John Wiley & Sons, New York
  3. A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt (2001), Industrial biocatalysis today and tomorrow, Nature 409, 258-268 https://doi.org/10.1038/35051736
  4. http://www.drugandmarket.com/
  5. http://www.frost.com/
  6. http://www.freedoniagroup.com/
  7. P. Besse and H. Veschambre (1994), Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  8. E. Y. Lee and M L. Shuler (2007), Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis, Biotechnol. Bioeng. 98, 318-327 https://doi.org/10.1002/bit.21444
  9. A. Archelas and R. Furstoss (2001), Synthetic applications of epoxide hydrolases, Curr. Opin Chem Biol. 5, 112-119 https://doi.org/10.1016/S1367-5931(00)00179-4
  10. E. J. de Vries and D. B. Janssen (2003), Biocatalytic conversion of epoxides, Curr. Opin. Biotechnol. 14, 414-420 https://doi.org/10.1016/S0958-1669(03)00102-2
  11. S. Panke, M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid (2002), Pilot-scale production of Pilot-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrεne monooxygenase, Biotechnol. Bioeng. 80, 33-41 https://doi.org/10.1002/bit.10346
  12. A. Schmid, K. Hofstetter, H.-J. Feiten, F. Hollman, and B. Witholt (2001), Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase, Adv. Synth. Catal. 343, 1-6 https://doi.org/10.1002/1615-4169(20010129)343:1<1::AID-ADSC1>3.0.CO;2-Y
  13. http://umbbd.ahc.umn.edu/
  14. S. Hartmans, M. J. van der Werf, and J. A. M de Bont (1990), Bacterial degradation of styrenε involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase, App. Environ. Microbiol. 56, 1347-1351
  15. H. H. J. Cox, B. W. Faber, W. N. M. van Heiningen, H. Radhoe, H. J. Doddema, and W. Harder (1996), Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase, Appl. Environ. Microbiol. 62, 1471-1474
  16. F. Beltrametti, A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro (1997), Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST, Appl. Environ. Microbiol. 63, 2232-2239
  17. G. Bestetti, P. D. Gennaro, A. Colmegna, I. Ronco, E. Galli, and G. Sello (2004), Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST, lnt. Biodeterior. Biodegrad. 54, 183-187 https://doi.org/10.1016/j.ibiod.2004.06.005
  18. A. Mooney, N. D. O ’Leary, and A. D. W. Dobson (2006), Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3, Appl. Environ. Microbiol. 72, 1302-1309 https://doi.org/10.1128/AEM.72.2.1302-1309.2006
  19. Y. Xu, M. W. Mortimer, T. S. Fisher, M. L. Kahn, F. J. Brokman, and L. Xu (1997), Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH: flavin mononucleotide oxidoreductase, J. Bacteriol. 179, 1112-1118 https://doi.org/10.1128/jb.179.4.1112-1116.1997
  20. S. Panke, A. Meyer, C. M. Huber, B. Witholt, and M. G. Wubbolts (1999), An alkane-responsive expression system for the production of fine chemicals, Appl. Environ. Microbiol. 65, 2324-2332
  21. S. Panke, B. Witholt, A. Schmid, and M. G. Wubbolts (1998), Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120, Appl. Environ. Microbiol. 64, 2032-2043
  22. S. Panke, M. G. Wubbolts, A. Schmid, and B. Witholt (2000), Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase, Biotechnol. Bioeng. 69, 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
  23. S. Panke, V. de Lorenzo, A. Kaiser, B. witholt, and M. G. Wubbolts (1999), Engineering of a stab1e whole-cell biocatalyst capable of (S)-styrene oxide fonnation for continuous two-liquid-phase applications, Appl. Environ. Microbiol. 65, 5619-5623
  24. F. Beltrametti, A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro (1997), Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST, Appl. Environ. Microbiol. 63, 2232-2239
  25. A. M. Marconi, F. Beltrametti, G. Bestetti, F. Solinas, M. Ruzzi, E. Galli, and E. Zennaro (1996), Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST, Appl. Environ. Mzcrobiol. 62, 121-127
  26. N. D. O 'Leary, K. E. O 'Conner, W. Duetz, and A. D. W. Dobson (2001), Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3, Microbiology 147, 973-979 https://doi.org/10.1099/00221287-147-4-973
  27. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen (1997), Asymmetric catalysis with water: Efficient kinetic resolution of tenninal epoxides by means of catalytic hydrolysis, Science 277, 936-938 https://doi.org/10.1126/science.277.5328.936
  28. V. Blanc, D. Lagneaux, P. Didier, P. Gil, P. Lacroix, and J. Crouzet (1995), Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of prystinamycin II B to prystinamycin IIA (P II A): P II A synthase and NADH: riboflavin 5'-phosphate oxidoreductase, J. Bacteriol. 177, 5206-5214
  29. B. Galan, E. Diaz, M. A. Prieto, and J. Garcia (2000), Functional analysis of the small component of the 4-hydroxypheny1acetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin: NAD(p)H reductase subfamily, J. Bacteriol. 182, 627-636 https://doi.org/10.1128/JB.182.3.627-636.2000
  30. H. R. Knobel, T. Egli, and J. R. van der Meer (1996), Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600, J. Bacteriol. 178, 6123-6132
  31. M. A. Prieto and J. L. Garcia (1994), Molecular characterization of 4-hydroxyphenylacetate 3-hydroxlase of Escherichia coli. A two protein component enzyme, J. Biol. Chem. 269, 22823-22829
  32. M. S. Park, J. Bae, J. H. Han, E. Y. Lee, S. G. Lee, and S. Park (2006), Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide, J. Microbiol. Biotechnol. 16, 1032-1040
  33. P. M. Santos, J. M. Blatrly, I. D. Bartolo, S. Valla, and E. Zennaro (2000), Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST, Appl. Environ. Mzcrobiol. 66, 1305-1310 https://doi.org/10.1128/AEM.66.4.1305-1310.2000
  34. J. H. Han, M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006), Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1, Enzyme Microb. Technol. 39, 1264-1269 https://doi.org/10.1016/j.enzmictec.2006.03.002
  35. J. Kieboom, J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra (1998), Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance, J. Biol Chem. 273, 85-91 https://doi.org/10.1074/jbc.273.1.85
  36. E. W. van Hellemond, D. B. Janssen, and M. W. Fraaije (2007), Discovery of a novel styrene monooxygenase originating from the metagenome, Appl. Environ. Microbiol. 73, 5832-5839 https://doi.org/10.1128/AEM.02708-06
  37. F. Hollmann, P.-C. Lin, B. Witholt, and A. Schmid (2003), Stereospecific biocatalytic epoxidation: The first example of direct regeneration of a FAD- dependent monooxygenase for catalysis, J. Am. Chem. Soc. 125, 8209-8217 https://doi.org/10.1021/ja034119u
  38. F. Hollmann, K. Hofstetter, T. Habicher, B. Hauer, and A. Schmid (2005), Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation, J. Am. Chem. Soc. 127, 6540-6541 https://doi.org/10.1021/ja050997b