ERROR ESTIMATES OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR LINEAR SOBOLEV EQUATIONS

  • Ohm, M.R. (Division of Information System Engineering, Dongseo University) ;
  • Shin, J.Y. (Division of Mathematical Sciences, Pukyong National University) ;
  • Lee, H.Y. (Department of Mathematics, Kyungsung University)
  • Published : 2009.09.30

Abstract

In this paper, we construct fully discrete discontinuous Galerkin approximations to the solution of linear Sobolev equations. We apply a symmetric interior penalty method which has an interior penalty term to compensate the continuity on the edges of interelements. The optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^{\infty}(L^2)$ norm is proved.

Keywords

References

  1. D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), 724-760.
  2. I. Babuska and M. Suri, The h-p version of the finite element method with quasi-uniform meshes, RAIRO Model. Math. Anal. Numer. 21 (1987), 199-238.
  3. I. Babuska and M. Suri, The optimal convergence rates of the p-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), 750-776. https://doi.org/10.1137/0724049
  4. J. Douglas, T. Dupont, Interior penalty procedures for ellipric and parabolic Galerkin methods, Lecture Notes in Phys. 58 (1976), 207-216. https://doi.org/10.1007/BFb0120591
  5. R. E. Ewing, Numerical solution of Sobolev partial differential equations, SIAM J. Numer. Anal. 12 (1975), 345-363. https://doi.org/10.1137/0712028
  6. M. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numerische Mathematik 47 (1985), 139-157. https://doi.org/10.1007/BF01389881
  7. J. T. Oden, I. Babuska, C. E. Baumann, A discontinuous hp finite element method for diffusion provlems, J. Comput. Phys. 146 (1998), 491-519. https://doi.org/10.1006/jcph.1998.6032
  8. M. R. Ohm, H. Y. Lee, J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, Journal of Math. Anal. and Appli., 315, 2006, 132-143. https://doi.org/10.1016/j.jmaa.2005.07.027
  9. B. Riviere and M. F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equastions, Discontinuous Galerkin methods: theory, computation, and applications [Eds. by B. Cockburn, G. E. Karniadakis, and C.-W. Shu], Lecture Notes in computational science and engineering, springer-verlag 11 (2000), 231-244.
  10. B. Riviere, M. F. Wheeler, K. Banas, Part II. Discontinuous Galerkin method applied to single phase flow in porous media, Comput. Geosci. 4 (2000), 337-341. https://doi.org/10.1023/A:1011546411957
  11. B. Riviere, M. F. Wheeler, V. Girault, Part I. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Comput. Geosci. 8 (1999), 337-360.
  12. B. Riviere, M. F. Wheeler, V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for ellipric problems. https://doi.org/10.1137/S003614290037174X
  13. T. Sun, D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinerar Sobolev equations, Applied Mathematics and Computation 200 (2008), 147-159. https://doi.org/10.1016/j.amc.2007.10.053
  14. T. Sun, D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinerar Sobolev equations, Numerical Methods Partial Differential Equations 24(3) (2008), 879-896. https://doi.org/10.1002/num.20294
  15. M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), 152-161. https://doi.org/10.1137/0715010