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VARIANTS OF NEWTON’S METHOD USING FIFTH-ORDER
QUADRATURE FORMULAS: REVISITED
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ABSTRACT. In this paper, we point out some errors in a recent paper by
Cordero and Torregrosa [7]. We prove the convergence of the variants of
Newton’s method for solving the system of nonlinear equations using two
different approaches. Several examples are given, which illustrate the cubic
convergence of these methods and verify the theoretical results.
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1. Introduction

Consider the problem of finding a real zero of a function F : D C R* — R™®
that is, a real solution o € R™ of the system of nonlinear equations

F(X) =0, (1)

of n equations with n variables. In recent years, several iterative methods have
been developed to solve the system of nonlinear equations (1), essentially by
using the Taylor’s polynomial [5,19], Adomian decomposition [1,4,8,10], homo-
topy perturbation method [13], quadrature formulas [3,6,7,9,10,12,18] and other
techniques [2,11,14-17,19-21]. It is well known that the quadrature rules play
an important and significant role in the evaluation of the integrals. It has been
shown [3,6,7.9,10,12,18| that the quadrature formulas have been used to develop
some iterative methods for solving the system of nonlinear equations (1). Cordero
and Torregrosa [7] derived and analyzed two new iterative methods for solving
the system of nonlinear equations (1) by using the open and closed Simpson
quadrature formulas. They showed that both methods converge quadratically.
Further more, they have shown that, if the coordinate functions f; of F verify

—F =0, for 4,4,k 1,2,...,n}, 2
axjaa:k , 1or 1, 7, E{v i n} ()
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then both iterative methods have cubic convergence. Here, we note that the
convergence procedure provided by the authors has some errors, particularly in
equation (20) and equation (24) of their paper [7]. We provide correct results
after removing these errors, which is in section 3 of this paper. In this paper,
we correct their errors and prove the cubic convergence of their methods without
any condition by using the fixed point technique as well as the Taylor series
technique. In section 4 of this paper, we provide numerical examples to verify
the theoretical results. We note that there is no need of condition (2) for the
cubic convergence of the methods. Our results can be considered as a refinement
and improvement of the previously known results of [7] and others.

2. Iterative methods

In this section, we develop the iterative methods for solving the system of
nonlinear equations (1) and this is the main motivation.

Let F : K € R® — R™ be r-times Fréchet-differentiable on a convex set
K C€ R"™ and « be a real zero of the system of nonlinear equations (1), of n
equations with n variables. For any X,Xy € K, we may write (see [19]) the
Taylor’s expansion for F as follows.

F(X) = F(Xk) + F'(X3) (X — X)) + %F"(xk)(x — Xy )2
1
(r—1)!

1
+ E))TFW(XI‘)(X _ Xk)3 RS F(rAl)(Xk)(X - Xk)r_1

1 r—1 '

1-—+¢

+ / (——)F<r>(xk +t(X — X)))(X - Xy)"dt, (3)
0 (T — 1)'

For r = 1, we have

F(X) = F(Xy) + /01 F/(Xy + (X — X))(X — Xy )dt. (4)

Approximating the integral in (4), we can obtain
1
/ /(X + 6(X — X30))(X — Xgo)dt = F'(X30)(X — X). 5)
0

From (1), (4) and (5), we have
X = Xy — (F/(Xy)) 'F(Xy).

This allows us to suggest the following one-step iterative method for solving the
system of nonlinear equations (1).

Algorithm 2.1. For a given Xg, compute the approximate solution Xyy3 by
the following iterative scheme:

Xkt1= Xk — (F/(Xk))‘lF(Xk), k=0,1,2,..., (6)
where F/(Xy) is the Jacobian matrix at the point Xj. This method is known

as Newton’s method for solving the system of nonlinear equations (1). It is well
known that the Newton’s method has quadratic convergence (see [19]).
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If we approximate the integral in (4) by using the Simpson quadrature formula,
then we have

/1 F (X + £(X - X))(X = Xp)dt

o % [F’(Xk) 1 4F'(

From (1), (4) and (7), we obtain

BB roo) -0, 0

Xi + X
X=X, -6 {F’(Xk) +4F'( “;

)+ F’(X)] R(X).

Using this relation, we can suggest the following iterative method for solving the
system of nonlinear equations (1).

Algorithm 2.2 [7]. For a given Xy, compute the approximate solution Xy,
by the following iterative schemes:

Xy + A
Xyi1— Xy — 6 [F’(Xk) NI T

-1
)—l—FI()\k)] F(Xk), k=0,1,2,...,
(8)
where A= Xk — (F/(Xk)) 1F(Xy).
In a similar way, approximating the integral in (4) by using open quadrature
formula, we have

/1 F/(Xk + t(X — Xk))(X — Xk)dt

1 3X) + X Xy + X Xy +3X
N~{2F’( LIRS 76 )+2F’(L)} (X Xy). (9)
3 4 4
From (1), (4) and (9), we obtain
Xy + X Xy + X X, +3X ]t
X:Xk~3[2F’(§%)—F’(%)+2F’(%)} F(Xy).

Using this relation, one can suggest the following iterative method for solving the
system of nonlinear equations (1).

Algorithm 2.3 [7]. For a given X, compute the approximate solution Xy 41
by the following iterative schemes:

Xk + Ak
2

Xy +3Ac ] "
_ F(X
2| ro),

k=0,1,2,..., (10)

) —F(

) + 2F'(

Xy + A
Xpp1= Xp—3 [2F’( k: k

where A= X — (Fl(Xk))_lF(Xk).

3. Convergence analysis
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For the investigation of the convergence criteria of the iterative methods de-
veloped in section 2, we need the following results.

Consider X = (x1,X2,...,%n)* € R®, n > 1, and denote by J;;(X) the (i,
Jj)-entry of the Jacobian matrix J(X), and by H;;(X) the corresponding entry of
its inverse, then

n
D Hy (X)Ij(X)= b, (11)
j=1

where ik is the Kronecker symbol.

Lemma 1[7]. Let A\(X) be the iteration function of classical Newton’s method
with

A(X) =%~ Y Hi(X)fi(X), for i=1,2,...n

j=1
then
= 12
el ~o, (12)
and
Xila) _ ¢ 0% f; ()
— = H,; —J——— k,le{l,2,...n}. 13
axkaml J; (¥ (a) axkaxl fOT Z { TL} ( )
Lemma 2 [7]. Let u(X) be the iteration function such that,
1i(X) = &;i—(&, for i=1,2,...n
where A(X) be the iteration function of classical Newton’s method, then
Oui(a) 1
il el 14
axk 2 ik ( )
and
*u 1 ¢ a? P fila)
= Lk, le{1,2,...n}. 15
Maxl 2; ) Gatge Jor bkl€{12,..n} (15)

Theorem 3.1 [7]. Let F: D C R® — R*® be sufficiently differentiable at each
point of an open neighborhood D of « € R™, that is a solution of the system of
nonlinear equations (1). Let us suppose that J(X) is continuous and nonsingular
at «, then the sequence {Xy},., obtained by using the iterative methods (8)
and (10) converge quadratically to . Moreover, if the coordinate functions f; of
F verify that z%%c;—i =0, for 4,5,k € {1,2,...,n}, then both methods have
convergence of order three.

Remark 3.1. In the proof of the theorem 3.1, authors [7] have made the following
technical mistakes:
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Consider the equation (19) of the paper [7], which is:

9:(X) = M(X) +ZHU (X)f;(X GZMU (16)

j=1

The authors have derived equation (20) in their paper [7] from the above equation
Lij(X) | &i(X) — Z 16> f(X)=0. (17)

We note that, the derivation of equation (17) from equation (16) is wrong. There
is no relation between equation (16) and equation (17). Actually in [7], authors
did not take into account that the L;;(X) and M,;(X), are only the elements of
a matrix L(X) and its inverse matrix (L(X))™! = M(X), respectively, but are
not the inverse of each other. We derive the correct relation from equation (16),
which is equation (27) of this paper.

Also, another error was found in equation (24) of [7], is due to differentiation
of the equation

Lij(X) = J35(X) + 4335 ((X)) + T35 (MX)) , (18)
in a wrong way, where A(X) be the iteration function of classical Newton’s method
with

n
=Y Hi(X)fi(X), for i=1,2,...n

and
X+A(X i+
*, with (X)) = %'(X), fori=1,2,...n
Using these facts, equation (18) can be written as
O6(X) | ,0fi (uX)) I (MX))
Li;(X) = .
X = T . T o
By differentiating this equation with respect to xx, authors [7] have obtained
LX) FAX) | S0 00) 9 (X) 5 9, (10K) 1 (X
Oxk O0x;0xk OOz, Ox; = Otg Ox;0xx

wX) =

(19)

g=1

0 fi M(X)) 00 (X) | <~ 9fi (M(X)) 9*Ap(X)
+Z O\ 3£k Ix; +qz::1 N,  Ox0x ] (20)

in equation (24) of {7].

Note that, equation (19) shows that af’(”(x)) and af‘o‘(x)) are functions of
#(X) and A(X), respectively, where as u(X) zjmd A(X) both are functions of X.
But, the differentiation did by the authors in equation (20) is incorrect. We

remove their errors by using the chain rule of differentiation in a correct way (see
equation (35)).
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We now discuss the convergence criteria of the iterative methods (8) and (10)
for solving the system of nonlinear equations (1), using the fixed point approach.

Theorem 3.2. Let F : D C R™ — R™ be sufficiently differentiable at each
point of an open neighborhood D of o € R™, that is a solution of the system of
nonlinear equations (1). Let us suppose that J(X) is continuous and nonsingular
ot «, then the sequence {Xy},~o obtained by using the iterative methods (8) and
(10) converge cubically to o.

Proof. The iterative scheme defined in (8), is given by
A= Xie — (J(Xa)) THF(Xu), (21)

-1

@) +JI() | F(Xy). (22)

Xkt1= Xk — 6 | J(Xy) + 4J(

Let us consider the solution @ € R™ of the system of nonlinear equations (1)
as a fixed point of some iteration function G : R® — R™, by means of the
fixed-point iteration method

Xgp = G(Xy), k=0,1,2,...,

described in (22). Let us denote by g; : R* — R, i =0,1,2,...,n, the coordi-
nate functions of G and expanding g¢;(X), X = (x1,X2,...,Xn) ' € R", in a
Taylor series about « yields

n

og; 0%g;
9:{(X) = gi(a) + Z g(a ej Z > Bxfc?xn i1 €2

j1=1 J1 1j2=1

n 93 ’
T3 Z Z Z ox; 8,;‘]25% €51€j2€55 T, (23)

]1 1j2=1j3=1

where ¢;, = x;, — o,.
We denote L;; the (3, j)-entry of the matrix

LX) = J(X) +4J (u(X)) + I (A(X)),
and M;; is the (4, j)-entry of (L(X))™". Thus, the ith component of the iteration
function corresponding to the method (22) is
9i(X) = M(X) + Z Hy;(X)5(X) -6 Mii(X)f5(X). (24)
j=1 Jj=1
For i =1,2,... n, in (24), we have

91(X) = M (X) + ) Hii(X)f(X) — 6 Myj(X)f(X),

j=1 J=1
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92(X) = A2(X) + zn: Hoi(X)f5(X) — 6§: Mz;(X)f(X

9n(X) = Ma(X) + Y Hpg(X)f(X) - 6 Z M (X)£5(X).

Pre-multiplying 1st, 2nd, ..., nth equations in (25) by L;1(X), Li2(X), ...
L;n(X), respectively, we have

L (X)g1(X) = Lix (X)M (X) + Lin (X Z Hq(X
—6LZ-1(X)ZM1J-(X £(X
Lip(X)g2(X) = Liz(X)A2(X) + Liz(X Z Ha;(X

~6L(X) Y My (X)f(X), (26)

=1

6L;n(X) Xn: M (X)f5(X)

By using (11), the above equation can be manipulated as
n n n n
DL (X)g(X) = > Ly(X)N(X) + > Ly(X) (Z qu(X)fq(X)>
Jj=1 j=1 q=1

j=1
—6 Z diqfq (X
g=1

Through which, we have
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ZL (X) (gj( Z ja >+6f( )=0. (27)

By direct differentiation of equation (27) with respect to x, we have

> e <gj<x>~ (;qu(x)f >>
(50

—Z%(X)ﬁ?% 81;;) —0. (28)

Evaluating (28) at X = « and by using (12) and (18), we obtain

- 3Lij(a 9g; (@) & 9fq(a)
DY N H
JZ=:1 Iz +6ZJU ( Ay qz:; 192 5,
R2AC)
=0.
0 Oz
Through which, we get
> 9g5(a) & afq (@) dfi(a)
iJ i =0.
ZJJ(O[) axk ZJ] ZHJq 81‘k + axk
j=1 j=1
By using (11) in this equation, we have
89](0‘ & Ifq(a) afz( ) _
Z Jij(a — q; Sig oot on
Thus, we obtain
i J agj afz( ) afz(a) =0
Bxk oy, Oz .
Jj=1
From the above equation, we have
9g1(a) 392( ) Ign ()
i i Jin(a =0. 29
Ta(@) B 4 (@) 4 Tnle) (29)

Since the Jacobian matrix J(X) is assumed to be nonsingular in a neighborhood
of a, so from (29) it can be concluded that

99;(c) =0, for j,ke{1,2,...,n}. (30)
oxy
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Let us differentiate equation (28) with respect to z;, we obtain

9”Li;(X)
an 8X1 ( J X) Z H_]q )

j=1
0Ly (X) [ 09;(X)  9N(X) N OH(X x) 2l
* — Bxk ( (9X1 8){1 1 C?X] ZH . dxl
= p
0Li;(X) [ 0g;(X) 6)\1'( ) 8H?q
+Z Ox1 ( 0%y Oxk . Oxx
g
o [ PE)PNX) g PHE(X) "~ 0Hiq(X) 0fq(X)
+ Z Liy(X) ( Ox10x1 Ox1 X1 . Oxk 0%y fa(X) — . oxx  ox1
_ q= q=
Rars OHjq(X) dfq(X d £ (X) *H(X)
* ;LM(X) ( ; ox) ZHJQ Oxwdx) +63Xka){} N (31)
From equation (11}, we have Z H”(X) ‘m dik, By differentiating this
relation w. r. to xj;, we get
8H@3 8f1 (X> - 82fj (X)
— ” . 32
Z aXI ka Z HU {X) 8Xk8)(1 ( )

j=1

By using equations (12), (13), (18), (30), (32) and evaluating (31) at X = «, we
obtain

0L (o Afqla BL” o = (f?fq et
Z ali)( ZHM {()) 3 <>( S Hye) ())

g=1
. gi(@) Pl PP fale)
+ ; 6J55() (8:)3;»,8361 B ;HMM) Oz 0x; + ;HJQ(Q) x0Ty
6 3 (@) _ N~y (@ al@) | (0ila) _
+;6Jw (+qle§q aa:kc?xl ;HM(Q) axké?a:l +0 @kadﬁ:g
Thus, we have

"L OLii(a) [ & O fqlex OLij () - Ofqla
- 2l (3 o) 20 ) - 3~ 2l (3, 00

g=1
— & g;{w) d 0 fi(a)
6.J; = =0. (34
+3;2:I bJi5() (axkaxl O e (34)
Differentiating equation (19) with respect to xy, we get

OLy(X) _ 2°fi(X) | Z 0 fi (n(X)) Opp(X) Z 0 fi (MX)) 0Ap(X)
Oxx  0x;0xx Ox;0py  Oxx Or;0h,  Oxx (35)

@)
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Evaluating (35) at X = « and by using (12) and (14), we have
g 2
axk axjaxk
By using (36) in (34), we obtain

3104 Ofq(a "L fi(@) [ Ofg(c
B Z axfaxz (Zl qu(oz) J;agl )> _2138;;8(1:1) (Z qu(a) 8x(k )>

g=1

+ Gi Jij(c) (829]'(0‘)) e ZA o

Oz 0x; 001y

By using equation (11) in the above equation, we obtain

,382fi( ) a2fz +GZ‘]’J <829j(a)> +6 32f1( )_

5mlaxk (9.’L'kafL'l 3xk8a:l (‘):ckaxl
Thus, we get Y_7_, Ji;(@) <?9—mgk%> = 0. This relation can be written as

*g1(a) P*ga(a) *gn(a)
Ji Ji —— ek J ——— ] =0.
(@) ( guom ) T Gpan ) T T I Gam (38)
Since the Jacobian matrix J(X) is assumed to be nonsingular in a neighborhood
of &, Thus from (38), we can conclude that

9%g;(a)
OrL0x;
By using (30) and (39) in Taylor series (23), we conclude that the iterative method

(8) is at least cubically convergent. In a similar way, one can prove, the cubic
convergence of the iterative method (10). O

=0, for j k,le{1,2,...,n}, (39)

Now, we use Taylor’s expansion technique to prove that the iterative methods
(8) and (10) have cubic convergence. This technique is mainly due to Darvishi
and Barati [8-10] and Frontini and Sormani [12].

Theorem 3.3. Let F : K C R™ — R™ be r-times Fréchet-differentiable on a
convez set K containing the root o of the system of nonlinear equations (1). The
iterative methods (8) and (10) have cubic convergence.

Proof. The iterative scheme defined in (8), is given by
M= Xk — (F'(Xk)) ' F(Xk), (40)

Xk + Ak

Xk41= Xk — 6 _F/(Xk) + 4FI( )+ F/()\k)- F(Xk) (41)

Consider e, = Xk — «, then equation (41), we obtain

Xk + Ak

2 )+ F’()\k)_ F(Xy),

egx+1 — e = —6 F/(Xk) +4F’(
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through which, we have

\:F’(Xk) + 4F'(XL;—/\—k) + F'()\k)] eri1

Xk + Mk

5 ) -+ F/()\k) € — GF(Xk>. (42)

= {F’ (X)) + 4F'(
From equation (3) with X = &, we obtain
F(0) = F(X) + F(X)(o - Xi) + 5B (X — X)?
LB (X (o — Xi)* + O(([ (e — X)),

3!
since a be the root of the system of nonlinear equations (1), we get

F(Xi) = F'(Xijox -~ 2F"(Xi)ef + L F"(Xidef + O(llel).  (43)
Pre-multiplying equation (43) with (F/(Xy)) !, we obtain
(F(Xi) ' FXi) — e 5 (F(Xw) ' F/(Xed
F o (F(X) B (06 + O (llekll) . (44)

Applying Taylor’s expansion for F/ (X-k—éﬁk) and F/( ) at the point Xy, we have
Xk + Ak
2

F( )= F(X) — 5F 000 ((F000)  FXu)

1o ’ -1 2
5P (X (F/(Xi0) " F(Xa) 4 (45)
From equations (44) and (45), we get

Xi + Ak

7
F( 2

)= ()~ B0 w5 (F()) ™ B (X ek

gy (F00) ! B X0 + O ()] + $7/(%0)

e — 5 (F' (X)) ™ B/ (Xaed + 5 (7' (X)) B/ (Xiel + O ([fef])| 4+

Thus, we have

F,(Xk+x\k

)= F(Xi) 3P (Xiewc + 5 (%) (F' (%))~ " (Xue?

+ épff(xk)eg +0(lled]l) . (46)

Similarly, we can calculate
1 , s
F' () = F'(Xi) — ' (Xese + F”(Xie) (F' (X)) ' B (Xa)ef

5P (Xiet + O (llefl]) . (47
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From equations (42), (43), (46) and (47), we obtain

Xk + Ak

[F’(Xk) +AF (7

)+ 0| e = F (e
+4 [F’(Xk) - %F”(Xk)ek + %F”(Xk) (F/(X) " F' (X )e? + %F”’(Xk)eﬁ
£ (leti)] s + [ /000 ~ " (KuJew + /(%) (F'(0)) " B (X
+%F”’(Xk)eﬁ + 0 (Heﬁ”)} er — 6 {F’(Xk)ek — %F”(Xk)eﬁ

1
37 F (Xi)ei + O ([leicl]) | -

Thus, from the above equation, we have

Xk + Ak

F(Xy) + 4F'( )+ F'(Akﬁ st

_ EF"(xk) (F/(Xw) " F"(X3) | e} + O (Jlefll) . (48)

Error equation (48) shows that the iterative method (8) has cubic convergence.

Similarly, one can show that the iterative scheme (10) is also cubically convergent.
O

4. Numerical examples

We present some numerical examples to verify the theoretical results of the
methods defined in (8) (CT1) and (10) (CT2), see Table 4.1. We compare the
Newton’s method (NM) with these methods. All computations were done on
MAPLE. We consider 30 digits floating point arithmetic (Digits := 30) and
¢ = 107, The following stopping criteria is used for computer programs.

() [ Xap1 = Xilloo <&, (ii). [|[F(Xi)lloo <
The computational order of convergence p approximated (see[22]) by means of

oA In (|| Xic 11— Xicfoo /1| Xk = Xi—1[o0)
In (|| Xk — Xk—1foo/[[Xk-1 — Xk-2{|o0)

Example 4.1[7]. Consider the following system of nonlinear equations
Zox3 + x4 (22 +23) =0,
z123 + 24 (21 + 23) =0,
2122 + x4 (21 + 22) =0,
1T + 123 + 2223 = 1.
Example 4.2[7]. Consider the following system of nonlinear equations
%t + 8z sin(z2) =0,

1 +x9 = 1.
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Example 4.3[8]. Consider the following system of nonlinear equations
JJ% + ¢§ + L% =1,
227 + 22 — 4z =0,
322 — 4xi + 2 =0.
Example 4.4[7]. Counsider the following system of nonlinear equations
2322 — 29 +05=0, =z} +4a3-4=0.
Example 4.5 {7]. Consider the following system of nonlinear equations

€T eV - 0, z—x2=0.

Table 4.1. {Numerical Examples and Comparison)
Exp. Initial Value Method IT Approximate solution I
4.1 (0.6, 0.6, 0.6, -0.2)" NM 5 (0.57735, 0.57735, 0.57735, -0.28868)" 2.0
CT1 3 (0.57735, 0.57735, 0.57735, -0.28868)" 3.3
3

CT2 (0.57735, 0.57735, 0.57735, -0.28868)" 3.3

4.2 0.2, 0.8)* NM 5 (-0.14028501081, 0.1402850108)° 2.0
Tl 4 (-0.14028501081, 0.1402850108)" 3.0

T2 4 (-0.14028501081, 0.1402850108)" 3.0

4.3 (0.5, 0.5, 0.5)" NM 6  (0.69828861, 0.62852430, 0.34256419)° 2.0

CT1 4 {0.69828861, 0.62852430, 0.34256419)' 3.0
CT2 4 (0.69828861, 0.62852430, 0.34256419)° 3.0

4.4 (0.5, 0.5)* NM 7 (-0.2222145551, 0,.9938084186)° 2.0
CT1 5 (-0.2222145551, 0.9938084186)° 3.0

CT2 5 (-0.2222145551, 0.9938084186)" 3.0

{(-0.3, Dt NM 5 (-0.2222145551, 0.9938084186)° 2.0

CT 3 (-0.2222145551, 0.9938084186)" 3.0

T2 3 (-0.2222145551, 0.9938084186)" 3.0

4.5 0.5, 0.5)¢ NM 5 (0, 0y 3.0
CT1 3 (0, 0)* 5.1

T2 3 (0, 0)* 5.1

rom the Table 4.1, we see that the computational order of convergence p of
the methods defined in (8) and (10) is at least 3.

Remark 4.1. We would like to emphasize that if the condition (2} holds, then
the Newton’s Method has cubic convergence and the methods defined in (8) and
(10) have fifth order convergence. This fact is illustrated by example 4.5 (see
Table 4.1).

5. Conclusion.

In this paper, we have shown that the methods proposed by Cordero and
Torregrosa [7] for solving the system of nonlinear equations (1) are cubically
convergent without any condition. WE also rectified the fundamental errors in
their convergence results.
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