Rheological Properties of Poly(ethyleneoxide-propyleneoxide-ethyleneoxide) Hydrogel

Poly(ethyleneoxide-propyleneoxide-ethyleneoxide) 하이드로겔의 유변학적 특성 연구

  • Choi, Min-Hoon (Department of Molecular System Engineering, Hanyang University) ;
  • Kang, Jun-Tae (Department of Molecular System Engineering, Hanyang University) ;
  • Kim, Duk-Ki (Department of Molecular System Engineering, Hanyang University) ;
  • Kim, Seong-Hun (Department of Molecular System Engineering, Hanyang University)
  • 최민훈 (한양대학교 응용화공생명공학부 분자시스템공학과) ;
  • 강전태 (한양대학교 응용화공생명공학부 분자시스템공학과) ;
  • 김덕기 (한양대학교 응용화공생명공학부 분자시스템공학과) ;
  • 김성훈 (한양대학교 응용화공생명공학부 분자시스템공학과)
  • Published : 2009.08.31

Abstract

Hydrogel is prepared using triblock copolymer of poly(ethyleneoxide-propyleneoxide-ethyleneoxide) with different block contents. Each hydrogel showed different rheological and thermal behavior according to the conditions of gelation such as solution temperature, the content of block copolymer, and block ratio between ethylene oxide and propylene oxide. In this hydrogel system, poly(propyleneoxide) and poly(ethyleneoxide) acted as hydrophobic and hydrophilic domains, respectively. In aqueous solution, block copolymer acts as a surfactant, and then formed micelles due to the hydrophilic-lyophobic balance. These micelles aggregated and formed a lattice structure. In temperature sweeping using Rheometer, transition of aqueous block copolymer solution was developed from a liquid state through soft-gel state to hard-gel state as increasing temperature. Hydrogels with different block ratio of PPO and PEO represent different sol-gel and gel-sol transition point.

Keywords

References

  1. I. Schmolka, US Patent, 740421 (1973)
  2. J. C. Gilbert, J. Hadgraft, A. Bye, and L. G. Brookes, Int J Pharm, 1986, 32, 223-228 https://doi.org/10.1016/0378-5173(86)90182-1
  3. J. Juhasz, V. Lenaerts, P. Raymond, and H. Ong, Biomaterials, 1989, 10, 265-268 https://doi.org/10.1016/0142-9612(89)90103-8
  4. S. Mizayaki, C. Takeuchi, C. Yokouchi, and M. Takada, Chem Pharm Bull, 1984, 32, 4205-4208 https://doi.org/10.1248/cpb.32.4205
  5. M. Guzman, F. F. Garcia, J. Molpeceres, and M. R. Aberturas, Int J Pharm, 1992, 80, 119-127 https://doi.org/10.1016/0378-5173(92)90269-8
  6. R. Langer and N. A. Peppas, AIChE Journal, 2003, 49, 2990-3006 https://doi.org/10.1002/aic.690491202
  7. J. Jagur-Grodzinski, Polym Adv Technol, 2006, 17, 395-418 https://doi.org/10.1002/pat.729
  8. D. S. Jones, C. P. Lorimer, C. P. McCoy, and S. P. Gorman, J Biomedical Materials Research Part B: Applied Biomaterials, 2008, 85B, 417-426 https://doi.org/10.1002/jbm.b.30960
  9. K. Mortensen and J. S. Pedersen, Macromolecules, 1993, 26, 805-812 https://doi.org/10.1021/ma00056a035
  10. P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, Macromolecules, 1994, 27, 2414-2425 https://doi.org/10.1021/ma00087a009
  11. V. M. Nace (Ed.) 'Nonionic Surfactants. Polyoxyalkylene Block Copolymers', Marcel Dekker, New York, 1996, Vol. 60
  12. Z. Zhou and B. Chu, Macromolecules, 1987, 20, 3089-3091 https://doi.org/10.1021/ma00178a027
  13. Z. Zhou and B. Chu, J Colloid Interface Sci, 1988, 126, 171-180 https://doi.org/10.1016/0021-9797(88)90111-7
  14. K. Schillen, O. Glatter, and W. Brown, Prog Colloid Polym Sci, 1993, 93, 66-71 https://doi.org/10.1007/BFb0118476
  15. M. J. Park and K. Char, Macromol Rapid Commun, 2002, 23, 688-692 https://doi.org/10.1002/1521-3927(20020801)23:12<688::AID-MARC688>3.0.CO;2-R
  16. D. C. Pozzo and L. M. Walker, Macromol Symp, 2005, 227, 203-210 https://doi.org/10.1002/masy.200550920