스캐너와 평균 밝기를 이용한 프린터 출력물의 색 균일도 추정

김지홍*, 최두현**

요 약

컬러 프린터의 성능을 결정하는 여러 요소 중 색 균일도는 프린터의 개발 단계에서나 완제품의 성능 평가 자료로 중요한 항목이다. 개발 현장에서는 현재 농도계를 사용하여 수동으로 색 균일도를 측정하고 그 측정 결과를 분석하여 성능을 평가한다. 본 논문에서는 스캐너와 평균 밝기를 사용하여 색 균일도를 자동으로 추정하는 방법을 제안한다. 제안된 방법은 기존의 방법에서 사용하는 레터와 스캐너를 이용하여, 위치에 따른 색 균일도를 추정하며, 실험을 통해 추정된 데이터가 농도계로부터 측정된 농도와 유사성을 보인다. 아울러 균일도에 대한 분석과 함께 현재 판매되고 있는 프린터와 스캐너를 이용하여 제안한 알고리즘의 유용성을 검증한다.

Color Uniformity Estimation of Printouts Using a Scanner and Average Brightness

Ji-Hong Kim*, Doo-Hyun Choi**

ABSTRACT

Among many factors for evaluating the performance of color printers, the color uniformity is an important factor during the stage of development and mass production. Currently the color uniformity is measured manually using densimeters and the data is analyzed by inspectors to evaluate the performance. In this paper a new method of estimating the color uniformity using scanners and average brightness is presented. The color uniformity of printouts is estimated by using the test pattern and commercially available scanner. It is shown from experiments that the estimated data are similar to the data measured by densimeters. Also, with the analysis of the color uniformity, the usefulness of the proposed approach is presented.

Key words: Color Uniformity(색 균일도), Printout(출력물), Average Brightness(평균 밝기)

1. 서 론

프린터는 컴퓨터나 디지털 카메라 또는 휴대 전화의 출력 장치 중의 하나로서, 디지털 데이터로 저장된 자료를 중이에 인쇄하는 장치이다. 초기의 프린터는 단순히 디지털 데이터를 중이에 출력하는 장치에 불과하였지만, 보다 나은 출력물을 생성하기 위해 하드웨어와 내부 소프트웨어가 점차 보강되고 있다. 프린터의 하드웨어는 종이에 화상을 보기 좋은 품질로 인쇄하는 현상부와 용지함을 이동시키는 구동부로 나눌 수 있으며, 내부 소프트웨어는 출력 화질을 최상으로 변환하는데 직접적으로 관여하는 소프트

* 교신저자(Corresponding Author): 최두현, 주소: 대구시 북구 산청동(702-701), 전화: 053)950-5508, FAX: 053)950-5508, E-mail: dhc@ee.knu.ac.kr
** 합성일: 2009년 5월 7일, 완료일: 2009년 6월 5일

* 정희원, 동의대학교 영상정보공학과 부교수 (E-mail: arim@deu.ac.kr)
** 정북대학교 전자전기컴퓨터학부 부교수
웨어와 구동 및 초기화에 필요한 점orWhere 부분들을 구성된다. 지금까지 보다 나은 출력 결과와 가격 경쟁력을 확보하고 출력 화질에 대한 평가를 위한 다양한 연구들이 수행되었다. 이들을 분류하면, 프린터 하드웨어 개선에 대한 연구[1], 출력물의 화질 개선에 관한 연구[2,3], 토너 성분을 개선하기 위한 연구[4], 용지에 따른 화질 및 해상도 비교 및 자동화된 화질 평가와 개선에 관한 연구[5-8] 등이 있다.

본 논문에서는 프린터 출력물의 농도 균일도 (uniformity)에 관한 논문이다. 기존에는 개발단계에서 농도계를 사용하여 수동 혹은 반자동으로 농도를 측정하고, 그 값을 프린터 양산 시 양품과 불량품을 구별하는 기준으로 삼는다. 농도 균일도에 대한 기준은 프린터 모델과 농도 측정 장치에 따라 달라지며, 생산자마다 독자적인 측정 방법과 판단 기준을 적용하여 생산에 활용하고 있다. 기존의 시험 환경은 측정 기로 프린터 출력물의 농도를 일일이 측정하고 그 평균치로 결과를 판단하는 방식으로 이루어지며, 이에 따라 많은 시간이 소요될 뿐 아니라 결과 값의 객관성을 확보하기도 어렵다. 본 논문에서는 이러한 시험을 개선하여, 스케니어를 이용한 균일도 자동 측정법을 제안하고자 한다. 아울러 기존의 균일도 판별법인 논도계를 사용한 측정치를 비교, 제시하여 제안한 방법의 우수함을 검증하고자 한다.

본 논문의 구성은 다음과 같다. 제 2장에서는 컬러 레이저 프린터의 인쇄 시스템을 간략하게 소개하고, 기존의 농도 균일도 측정 방법을 소개한다. 그리고 제3장에서는 균일도를 자동으로 판별하기 위해 제안한 방법을 설명하고, 제안된 방법을 이용한 농도 측정 결과를 제시한다. 끝으로 제 4장의 결론으로 논문을 맺는다.

2. 프린터 시스템 소개 및 기존 농도 측정법

2.1 프린터의 인쇄 시스템

일반적인 레이저 프린터에서 용지 급지에서 최종 출력물이 나오기까지의 과정을 그림 1에 간단히 나타내었다. 이 과정은 총 7단계로 구성되며, 특히 현상 프로세스는 7단계 중 2단계에서 5단계에 이르는 4개의 단계에 이루어져진다[7].

먼저 1단계에서 용지 급급이 이루어지면, 전자 사진(Electro-Photos)을 만들어 내는 첫 과정인 2단계

의 대전(Charging) 단계에서 OPC(Alternating Photo Conductor) 드럼의 표면을 마이너스 전압으로 만든다. 3단계인 노광(Exposure) 단계에서는 컴퓨터에서 프린터 드라이버를 통하여 받은 화상 영역에 필요 한 각각의 망점(dot) 한 개씩의 정보를 받아 인쇄될 부분에 빛을 조사하여 양의 전압으로 OPC 드럼에 인쇄될 부분에 빛을 조사해 준다. 이어서 4단계인 현상(Development) 단계에서는 노광을 통하여 OPC drum 표면에 인쇄된 부분에만 토너가 남고 노광되지 않은 부분의 토너는 이탈하여 인쇄 면에만 토너 를 뿌린다. 5단계인 전사(Transfer) 단계에서는 현상 부분을나머지 토너가 종이 위에 고정되도록 하는데, 이는 용지가 배출된 후 특정 영역의 토너가 일부 이탈하여 농도가 흐려지는 것을 막기 위한 작업이다. 이후, 정착(Fixing) 과정을 거쳐 최종적으로 용지 를 배출(Exit)하게 된다.

2.2 기존 농도 측정법

출력된 프린터 결과물의 성능을 평가하는 과정은 다음과 같다. 먼저 미리 정해진 특정한 배출을 출력한 후 그림 2에 나타낸 스��토리트에 야고 또는 스텔로 리노와 같은 농도 측정 장비를 이용하여 그 배출의 농도를 측정한다. 이러한 농도 측정 전용 장비는 먼 저 출력물의 흰색 부분에서 0점 조정한 후 피측정 영역의 농도를 측정한다. 그 결과를 분석하여 농도 호림, 가로 방향 혹은 세로 방향 뿐, 농도 불균일 등과 같은 농도 관련 결함들을 분석하고, 필요하면 프린터에 대한 하드웨어 또는 소프트웨어적인 보완을 하게 된다.
그림 2. 농도 측정 장비 (7,9) (a) 스펙트로 아이, (b) 스펙트로 리노

농도 균일도를 파악하기 위해 주로 사용하는 패턴은 그림 3과 같이 용지의 원쪽 상단, 오른쪽 상단, 중앙, 원쪽 하단, 오른쪽 하단에 순서로 Cyan, Magenta, Yellow, Black의 색으로 표현된 패턴을 사용한다. 이들 프린트가 제작해 주는 해상도로 출력한 후 그림 2와 같은 농도계를 이용하여 수동으로 측정하고 분석한다. 측정할 때에는 각 색의 영역을 다시 작은 영역으로 분할하여 영역들의 전체 평균값과 허용 오차들을 선정한다. 정상 제품 혹은 이상 제품의 영역 평균값과 허용 오차를 먼저 확인한 후 이를 기준으로 여러 출력물의 성능을 평가한다. 이러한 성능 평가는 다시 시스템의 하드웨어적인 혹은 소프트웨어적인 결함을 수정하는데 활용된다.

그림 3의 패턴과 그림 2의 농도 측정 장비를 이용하여 수동 방식으로 출력물의 색 균일도를 측정하여 만든 농도 균일도 스펙트로의 한 예를 표 1에 나타내었다. 100% 색상에 대한 각 컬러의 농도 평균값과 허용 오차를 표시하였는데, 이는 농도계의 종류와 사용자의 숙련도에 따라서 다소간의 오차가 존재한다. 그림 4에

표 1. 프린터의 C, M, Y, K에 대한 농도 스펙트로

<table>
<thead>
<tr>
<th>입력값</th>
<th>100% (engine pattern*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td></td>
</tr>
<tr>
<td>Cyan</td>
<td>0.72</td>
</tr>
<tr>
<td>Magenta</td>
<td>0.93</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.71</td>
</tr>
<tr>
<td>Black</td>
<td>1.17</td>
</tr>
<tr>
<td>편차</td>
<td>± 0.05</td>
</tr>
</tbody>
</table>

* engine pattern은 프린터 드라이버의 두ﻎ가 거짓이 아닌 프린터 시스템 자체의 출력값을 의미함

![그림 4. 프린터 모델별 농도 편차 (a) Cyan (b) Magenta (c) Yellow (d) Black](image)

몇몇 프린터 모델에 대해 위치에 따른 농도 평균값 측정 결과를 제시하였다. 측정 위치 1은 중앙, 2는 좌측상단, 3은 우측상단, 4는 좌측하단, 5는 우측하단을 각각 의미한다. 그림 4에서 볼 수 있는 것처럼 동일 제조사라 하더라도 프린터의 모델, 시스템과 토너 성분 및 컬러 매칭 시스템 혹은 노광 시 광 파워 개수 값에 따라 농도는 달라진다. 이러한 점을 고려할 때 농도에 대한 판별은 프린터 모델 혹은 농도 측정을 위해 사용되는 장비별로 서로 다르게 진행되어야 한다는 것을 확인할 수 있다.

3. 농도 균일도 자동 측정

3.1 농도 균일도 자동 측정

본 논문에서는 농도 측정 장치 대신 일반적으로 사무실에서 흔히 사용하는 스캐너를 활용하여 자동적으로 농도 균일도를 관측하는 새로운 방법을 제시하고, 기존 농도계를 이용하여 추출된 측정치와 비교
한다. 이러한 제한된 방법은 프린터 장비나 모델별로 상이하게 진행되는 군일도 판별을 용이하게 하고, 결
과도 객관화하는데 도움이 될 수 있다.
그림 5에 본 논문에서 사용한 농도 군일도 자동측
정 시스템의 실험 환경을 도시하였다. 본 논문에서는
프린터 출력물을 스캐너로 스캔하여 기존의 농도 대
신 R, G, B 컬러 정보를 기준으로 군일도 판별하고
자 한다. 이를 위해 사용한 패턴은 기존 농도 측정
방식에서 사용된 것과 같은 그림 3의 패턴을 600dpi
로 출력하여 사용하였다. 각 컬러 영역의 점대크기는
1cm × 1cm이며, 4800dpi의 해상도로 스캔한 영상을
입력으로 사용하였다.
군일도를 산정하기 위해서는 먼저 각 영역에 대한
색상의 특성값들이 필요하다. 본 논문에서는 영역의
총 컬러 성분과 평균값 및 영역내의 해당 컬러 성분
의 분포를 특정으로 사용하였다. 영역의 총 컬러 성
분을 영역의 면적으로 나눈 물리적으로는 그 영역
의 밀도와 관련된 정보에 해당되므로 이 정보가 기존
농도계의 군일도의 연관성은 있다고 할 수 있다. 컬
러별로 총 컬러성분의 농도 $D_{(R,G,B)}$는 식 (1)로 표현
되는데, 각 영역에서 컬러 성분의 세기 i와 해당 범위
의 화소 수 $h_{(R,G,B)}(i)$의 곱의 합을 화소 수의 합으로
나는 것이다.

$$D_{(R,G,B)} = \frac{\sum_{i=0}^{255} i \times h_{(R,G,B)}(i)}{\sum_{i=0}^{255} h_{(R,G,B)}(i)} \quad (1)$$

영역의 총 컬러 성분을 영역의 면적 혹은 전체 화
소 수로 나누면 평균 밝기에 해당된다. 물리적으로는
그 영역의 컬러 밝도와 관련된 정보에 해당되므로
이 정보가 기존 농도계의 군일도의 연관성이 있다고
할 수 있다. 편차는 영역별로 평균과 가장 큰 오차
값으로 기준을 삼았다.

3.2 위치에 따른 군일도

표 2에 패턴의 위치에 따른 각 컬러별 농도를 제시
하였다. 평균을 기준으로 양과 음의 방향을 최근 편
차가 비교적 유사하게 나타났으며, 평균도 상당히 유
사하게 나타났다. 이는 사용 프린터와 임크가 프리리
점으로 흙상 군일도가 양호함을 의미하는 것으로
해석된다. 그림 6에 Cyan, Magenta, Yellow, 그리고
Black 100%의 색상에 대해서 각 색상 별로 위치에
따른 농도를 제시하였는데, 그림 4와 유사함을 알 수
있다. 그림 6에서 측정 위치 1은 중앙, 2는 좌측 상단,
3은 우측 상단, 4는 좌측 하단, 5는 우측 상단을 각각
의한다.

3.3 영역 내에서의 군일도

패턴 내부의 군일도를 확인하기 위해 각 색품 패
턴을 일정 크기의 블록으로 나누어 각 블록 평균의
차이와 각 패턴의 편차를 이용하여 패턴 내의 군일
도를 판별하였다. 본 논문에서는 패턴의 경계 영역
을 제외한 400×400 화소 영역을 가로세로 각 10개
총 100개의 영역으로 분할하였다. 영역의 오차 기준
을 표 1의 농도와 편차의 참조하여 설정하였다. 그림
7은 그 결과를 나타낸 것이다. 그림 7(a)는 출력된
패턴이며, (b), (c), (d)는 패턴의 평균값과 분할 영역
의 평균값에 대한 오차가 표 1의 편차를 벗어나는 영역을 표시하였다. 실험에 사용한 프린터는 상대적
으로 R, G 영역의 오차가 크다는 것을 확인할 수 있
었다.

표 2. cyan 100%에 대한 각 컬러별 농도(평균 밝기) 및
편차

<table>
<thead>
<tr>
<th>항목</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>중앙</td>
<td>16.93</td>
<td>120.58</td>
<td>204.26</td>
</tr>
<tr>
<td>좌측상단</td>
<td>23.73</td>
<td>121.92</td>
<td>200.43</td>
</tr>
<tr>
<td>우측상단</td>
<td>29.75</td>
<td>125.19</td>
<td>201.97</td>
</tr>
<tr>
<td>좌측하단</td>
<td>23.24</td>
<td>127.33</td>
<td>212.18</td>
</tr>
<tr>
<td>우측하단</td>
<td>24.06</td>
<td>128.74</td>
<td>213.09</td>
</tr>
<tr>
<td>평균</td>
<td>23.54</td>
<td>124.75</td>
<td>206.39</td>
</tr>
<tr>
<td>+최대편차</td>
<td>6.61</td>
<td>3.99</td>
<td>6.70</td>
</tr>
<tr>
<td>-최대편차</td>
<td>6.61</td>
<td>4.17</td>
<td>5.96</td>
</tr>
</tbody>
</table>
4. 결 론

본 논문에서는 프린터 현상 시스템에서의 필수 검토 항목인 농도 중 농도 균일도에 대해 다무었다. 기존 방식에서는 수동으로 농도 측정기를 사용하여 농도를 측정하고 분석하되, 측정 장치를 사용하는 사람에 따라 혹은 측정 상황에 따라 그 기준값이 변하

김 지 훙
1986년 경북대학교 전자공학과 공학사
1988년 경북대학교 대학원 전자 공학과 공학석사
1996년 포항공과대학교 대학원 전자전기공학과 공학박사
1988년~1996년 한국전자통신연구원 산입연구원
1997년~2001년 부산외국어대학교 컴퓨터공학과 조교수
2008년 미국 조지아공대 방문교수
2002년~현재 동의대학교 영상정보공학과 부교수
관심분야: 영상처리, 컴퓨터그래픽스, 컴퓨터비전

최 두 현
1991년 경북대학교 전자공학과 학사
1993년 포항공과대학교 대학원 전자전기공학과 석사
1996년 포항공과대학교 대학원 전자전기공학과 박사
1996년~2000년 경북대학교 전자전기공학부 계약조교수
2003년~현재 경북대학교 전자전기컴퓨터학부 부교수
관심분야: 신호처리, 영상해석, 비파괴검사, 지능 알고리즘, 무인자동차