Planar, Air-breathing PEMFC Systems Using Sodium Borohydride

$NaBH_4$를 이용만 공기호흡형 수소연료전지에 대한 연구

  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology, Icheon Branch Institute) ;
  • Hwang, Kwang-Taek (Korea Institute of Ceramic Engineering & Technology, Icheon Branch Institute)
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원)
  • Published : 2009.08.30

Abstract

In a pursuit of the development of alternative mobile power sources with a high energy density, a planar and air-breathing PEMFCs with a new type of hydrogen cartridge which uses onsite $H_2$ generated from sodium borohydride ($NaBH_4$) hydrolysis have been investigated for use in advanced power systems. Two types of $H_2$ generation through $NaBH_4$ hydrolysis are available: (1) using organic acids such as sulphuric acid, malic acid, and sodium hydrogen carbonate in aqueous solution with solid $NaBH_4$ and (2) using solid selected catalysts such as Pt, Ru, CoB into the stabilized alkaline $NaBH_4$ solution. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two methods mentioned above. The effects of flow rate of stabilized $NaBH_4$ solution, MEA (Membrane Electrode Assembly) improvement, and type and flow control of the catalytic acidic solution have been studied and the cell performances of the planar, air-breathing PEMFCs using $NaBH_4$ has been measured from aspects of power density, fuel efficiency, energy density, and fast response of cell. In our experiments, planar, air-breathing PEMFCs using $NaBH_4$ achieved to maximum power density of 128mW/$cm^2$ at 0.7V and energy efficiency of 46% and has many advantages such as low operating temperature, sustained operation at a high power density, compactness, the potential for low cost and volume, long stack life, fast star-up and suitability for discontinuous operation.

Keywords

References

  1. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, and M. Binder, 'A safe, portable, hydrogen gas generator using aqueous borohydrid solution and Ru catalyst' Int. J. Hydrogen Energy 25(2000), pp. 969-975 https://doi.org/10.1016/S0360-3199(00)00021-5
  2. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, and M. Binder 'An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst' J. Power Sources 85(2000), pp. 186-189 https://doi.org/10.1016/S0378-7753(99)00301-8
  3. Y. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, and H. Hayashi, 'Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide' Int. J. Hydrogen Energy 27(2002), pp. 1029-1034 https://doi.org/10.1016/S0360-3199(02)00014-9
  4. C. Wu, H. Zhang, and B. Yi, Catal. Today 93-95(2004), pp. 477-483 https://doi.org/10.1016/j.cattod.2004.06.095
  5. J. H. Kim, H. Lee, S. C. Han, H. S. Kim, M. S. Song, and J. Y. Lee, 'Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance' Int. J. Hydrogen Energy 29(2004), pp. 263-267 https://doi.org/10.1016/S0360-3199(03)00128-9
  6. P. Krishnan, T. H. Yang, W. Y. Lee, and C. S. Kim, 'PtRu-LiC02-an efficient catalyst for hydrogen generation from sodium borohydride solutions' J. Power Sources 143(2005), pp. 17-23 https://doi.org/10.1016/j.jpowsour.2004.12.007
  7. B. H. Liu, Z. P. Li, and L. L. Chen, 'Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH4-air battery' J. Power Sources 180(2008), pp. 530-534 https://doi.org/10.1016/j.jpowsour.2008.02.058
  8. J. H. Kim, J. Y Lee, K. H. Choi, and H. Chang, 'Development of planar, air-breathing, proton exchange membrane fuel cell systems using stabilized sodium borohydride solution' J. Power Sources 185(2008), pp. 881-885 https://doi.org/10.1016/j.jpowsour.2008.08.102
  9. V. G. Minkina, S. J. Shabunya, V. J. Kalinin, V. V. Martynenko, and A. L. Smirnova, 'Longterm stability of sodium borohydrides for hydrogen generation' Int. J. Hydrogen Energy 33 (2008), pp. 5629-5635 https://doi.org/10.1016/j.ijhydene.2008.07.037
  10. J. H. Kim, K. T. Kim, Y. M. Kang, H. S. Kim, M. S. Song, Y. J. Lee, P. S. Lee, and J. Y. Lee, 'Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride' J. Alloys and Compounds 379(2004), pp. 222-227 https://doi.org/10.1016/j.jallcom.2004.02.009
  11. D. Hua, Y. Hanxi, and C. Chuansin, 'Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst' Int. J. Hydrogen Energy 28(2003), p. 1095 https://doi.org/10.1016/S0360-3199(02)00235-5
  12. Z. T. Xia, and S. H. Chan, 'Feasibility study of hydrogen generation from sodium borodhydride solution for micro fuel cell applications' J. Power Sources 152(2005), pp. 46-49 https://doi.org/10.1016/j.jpowsour.2005.03.002
  13. J. H. Wee, 'A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells' J. Power Sources 155(2006), pp. 329-339 https://doi.org/10.1016/j.jpowsour.2006.01.036
  14. Kreevoy, and M.M. Jacobson, Ventron Alembic (1979), pp. 2-3
  15. F. Iwasaki, Seiko Instrument Inc., 2007 Small Fuel Cell Proceeding, Chap.ll
  16. P. P. Prosini and P. Gislon, 'A hydrogen refill for cellular phone' J. Power Sources 161(2006), pp. 290-293 https://doi.org/10.1016/j.jpowsour.2006.03.072
  17. J.G. Liu, T.S. Zhao, R. Chen, and C.W. Wong, ''The effect of methanol concentration on the performance of a passive DMFC' Electrochem Commun. 7(2005), pp. 288-294 https://doi.org/10.1016/j.elecom.2005.01.011
  18. 정성욱, 조은애, 오인환, 홍상안, 김성현, 남석우, '알칼리 $NaBN_4$ 용액에서 Co-B 촉매를 이용한 수소발생 반응에 관한 연구' 한국수소 및 신에너지학회 논문집, 15권, 2호