Estimate of Manganese and Iron Oxide Reduction Rates in Slope and Basin Sediments of Ulleung Basin, East Sea

동해 울릉분지 퇴적물에서 망간산화물과 철산화물 환원율 추정

  • Choi, Yu-Jeong (School of Earth and Environmental Science/Research Institute of Oceanography, Seoul National University) ;
  • Kim, Dong-Seon (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Lee, Tae-Hee (Southern Coastal Environment Research Department, KORDI) ;
  • Lee, Chang-Bok (School of Earth and Environmental Science/Research Institute of Oceanography, Seoul National University)
  • 최유정 (서울대학교 지구환경과학부/해양연구소) ;
  • 김동선 (한국해양연구원 기후연안재해연구부) ;
  • 이태희 (한국해양연구원 남해연구소) ;
  • 이창복 (서울대학교 지구환경과학부/해양연구소)
  • Published : 2009.08.31

Abstract

In order to determine organic carbon oxidation by manganese and iron oxides, six core sediments were obtained in slope and basin sediments of Ulleung Basin in East Sea. The basin sediments show high organic carbon contents (>2%) at the water depths deeper than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. In the Ullleung Basin, the surface sediments were extremely enriched by Manganese oxides with more than 2%. Maximum contents of Fe oxides were found at the depth of $1{\sim}4cm$ in basin sediments. However, the high level of Mn and Fe oxides was not observed in slope sediment. Surface manganese enrichments (>2%) in Ulleung Basin may be explained by two possible mechanisms: high organic carbon contents and optimum sedimentation rates and sufficient supply of dissolved Manganese from slope to the deep basin. Reduction rates of iron and manganese oxides ranged from 0.10 to $0.24\;mmol\;m^{-2}day^{-1}$ and from 0.30 to $0.57\;mmol\;m^{-2}day^{-1}$, respectively. In Ulleung Basin sediments, $13{\sim}26%$ of organic carbon oxidation may be linked to the reduction of iron and manganese oxides. Reduction rates of metal oxides were comparable to those of Chilean upwelling regions, and lower than those of Danish coastal sediments.

동해 울릉분지에서 망간산화물과 철산화물의 유기물 분해 기여율을 정량화하기 위하여 6개의 박스형 시추퇴적물을 채집하였다. 수심이 2,000 m 이상인 울릉분지 표층퇴적물에서 유기탄소 함량은 2.6% 가량으로 육상기원 유기물 유입이 많은 흑해와 용승 해역인 칠레 주변해역들과 비슷했다. 울릉분지에 위치한 정점들에서 망간산화물 함량은 퇴적물 최상부에서 2% 이상으로 매우 높았고, 철산화물 함량은 울릉분지 표층 $1{\sim}4cm$ 내외에서 2% 가량의 최고값을 나타냈다. 그러나 대륙사면 정점들에서 망간산화물과 철산화물 함량은 분지처럼 높은 값을 보이지 않았다. 동해 울릉분지에서 2% 이상으로 높은 망간산화물 함량은 높은 유기탄소 함량과 사면보다 비교적 느린 퇴적속도 때문이거나 망간 이온이 저탁류를 통해 사면에서 분지로 이동한 것으로 예상된다. 망간산화물 환원율은 $0.3{\sim}0.57\;mmol\;m^{-2}\;day^{-1}$의 범위를 보였고, 철산화물 환원율은 $0.10{\sim}0.24\;mmol\;m^{-2}\;day^{-1}$의 범위를 나타냈다. 울릉분지에서 금속산화물은 유기물 분해에 $13{\sim}26%$ 정도를 차지하였으며, 이는 칠레 용승 해역과 유사하고, 덴마크 연안보다 낮은 값이다.

Keywords

References

  1. 이경은, 강동진, 김경렬, 2001. 동해의 탄산칼슘 포화도. 한국해양학회지, 6: 234-241
  2. 천종화, 한상준, 정대교, 허 식, 박장준, 최동림, 1998. 울릉분지 북동부 해저수로 주변 퇴적층의 화산재층서. 지질학회지, 34:192-210
  3. Aller, R.c., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. Roy. Soc. London A331 , pp. 51-68
  4. Aller, R.C and D.J. Demaster, 1984. Estimation of particle flux and reworking at the deep sea floor using $^{234}Th/^{238}U$ disequilibrium. Earth and Planetary Sci. Lett., 67: 308-318 https://doi.org/10.1016/0012-821X(84)90170-5
  5. Bender, M.L and D.T. Heggie, 1984. Fate of organic carbon reaching the deep sea floor; a status report. Geochim. Cosmochim. Acta., 48: 977-986 https://doi.org/10.1016/0016-7037(84)90189-3
  6. Bender, M., R. Jahnke, R. Weiss, W. Martin, D.T. Heggie, J. Orchardo and T. Sowers, 1989. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta., 53: 685-697 https://doi.org/10.1016/0016-7037(89)90011-2
  7. Bemer, R.A., 1980. Early diagenesis. Princeton University Press, Princeton, 256pp
  8. Boning, P., S. Cuypers, M. Grunwald, B. Schnetger and H.J. Brumsack, 2005. Geochemical characteristics of Chilean upwelling sediments at $36^{\circ}S$. Mar Geol., 220: 1-21 https://doi.org/10.1016/j.margeo.2005.07.005
  9. Brocker, W.S and T.H. Peng, 1982. Tracers in the Sea, Lamontdoherty Geological Observatory, Columbia University, New York, 690 pp
  10. Canfield, D.E., 1993, Organic matter oxidation in marine sediments. In Interactions of C, N, P, and S Biogeochemical Cycies(ed.R. WOLLAST, et al.) NATO-AR W. Springer Verlag
  11. Canfield, D.E., B. Thamdrup and J.w. Hansen, 1993a. The anaerobic degradation of organic matter in Danish coastal sediments; lron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta., 57: 3867-3883 https://doi.org/10.1016/0016-7037(93)90340-3
  12. Canfield, D.E., B.B. Jorgensen, H. Fossing, Glud. R, J. Gundersen, N.B. Ramsing, J.w. Hansen, L.P. Nielsen and P.O.J. Hall, 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol., 113: 27-40 https://doi.org/10.1016/0025-3227(93)90147-N
  13. Carpenter R., J.T. Bennett and M.L. Peterson, 1981. $^{210}Pb$ activities in and fluxes to sediments of the Washington continental slope and shelf. Geochim. Cosmochim. Acta., 45: 1155-1172 https://doi.org/10.1016/0016-7037(81)90139-3
  14. Cha, H.J., M.S. Choi, C.B. Lee and D.H. Shin, 2007. Geochemistry of surface sediments in the southwestem EastlJapan Sea. J. Asian Earth Sciences., 29: 685-697 https://doi.org/10.1016/j.jseaes.2006.04.009
  15. Chen, C.T.A., S.L. Wang and A.S. Bychkov, 1995. Carbonate chemistry of the Sea of Japan. J. Geophys Res., 100:13737-13745 https://doi.org/10.1029/95JC00939
  16. Chester, R., 1990. Marine Geochemistry. Unwin Hyman Ltd, 698 pp
  17. Cho, Y.G, C.B. Lee, B.S. Kim and M.S. Choi, 1999. Geochemistry of surface sediments of1‘ the southem and westem coast of Korea. Mar Geol., 159: 111-129 https://doi.org/10.1016/S0025-3227(98)00194-7
  18. Cochran,J.K., 1995. Particle mixing rates in sediments of the eastem equatorial Pacific: Evidence from $^{210}Pb$,$^{239,240}Pu$ and $^{137}Cs$ distributions at MANOP sites. Gechim. Cosmochim. Acta., 49: 1195-1210 https://doi.org/10.1016/0016-7037(85)90010-9
  19. Cociasu, A., L. Dorogan, C. Humborg and L. Popa, 1996. Long-teml ecological changes in the Romanian coastal waters of the Black Sea. Mar Pollut Bull., 32: 32-38 https://doi.org/10.1016/0025-326X(95)00106-W
  20. DeMaster, D.J and J.K. Cochran, 1982. P없ticlc mixing rates in deep sea sediments determine:d from excess $^{210}Pb$ and $^{32}Si$ profiles. Earth Planet. Sci. Lett., 61: 257-271 https://doi.org/10.1016/0012-821X(82)90057-7
  21. Froelich, P.N., GP. Klinkhammer, M.L. Bender, N.A. Luedtke, GR Heath, D. Cullen and P. Dauphin, 1979. Early oxidation of organic matter in pelagic sediments of the eastem equatorial Atlantìc: suboxic diagenesis. Geochim. Cosmochim. Acta., 43:1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  22. Goldberg, E.D and M. Koide, 1962. Geochronological studies of deep sea sediments by the ionium/thorium method. Gcochím. Cosmochim. Acta., 26: 417-450 https://doi.org/10.1016/0016-7037(62)90112-6
  23. Hebbeln, D., M. Marchant and G Wefer, 2000. Seasonal variations of the particle flux in the Peru-Chile current at $30^\circ$S under ‘normal' and E1 Nino conditions. Deep Sea Res II., 47: 2101-2128 https://doi.org/10.1016/S0967-0645(00)00018-7
  24. Hong, GH., S.H. Kim, C.S. Chung, D.J. Kang, D.H. Shin, H.J. Lee and S.J. Han, 1997. $^{210}Pb$-derived sediment accumulation rates in the southwestem East Sea (Sea of Japan). Geo Mar Lett., 17:126-132 https://doi.org/10.1007/s003670050017
  25. Hyun, J.H., D. Kim, c.w. Shin, J.H. Noh, E.J. Yang, J.S. Mok, S.H. Kim, H.C. Kim and S. Yoo, 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat. Microb. Ecol., 54: 45-54 https://doi.org/10.3354/ame01280
  26. Jaeger, J.M and C.A. Nittrouer, 1999. Sediment deposition in an Alaskan fjord: controls on the formation and preservation of sedimentary structures in Jcy Bay. J. Sedimentary Res., 69: 1011-1026 https://doi.org/10.2110/jsr.69.1011
  27. Kato, T., M. Endo and M. Kayo, 1983. Vertical distribution of various elements in sediment cores from the Sea. Mar Geol., 53:277-290 https://doi.org/10.1016/0025-3227(83)90046-4
  28. KORDI 2003. Marine Ecosystem responses to climate variability in the East Sea. KORDI Tech Rep BSPE825-00-1495-3, 498pp
  29. Lord, C.L. III., 1980. The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph. D. Thesis, University Delaware, 177pp
  30. Lovley, D.R and D.J. Lonergan, 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol., 56: 1858-1864
  31. Lovley, D.R and E.J .P. Phillips, 1998a. Novel mode of microbial metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 54:1472-1480
  32. Masuzawa, T and Y. Kitano, 1978. Cyclic appearance ofreduced and oxidized sediments in a 10 m core from the Japan Sea. J. Earth Sciences of Nagoya University., 25: 1-10
  33. Mehra, O.P and M.L. Jackson, 1960. lron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. Proceedings of the national conference on clays and clay mineralogy, 7: 317-327
  34. Myers, C.R and K. H. Neason, 1988. Microbial rcduction of manganese oxides: interactions with iron and sulfur Geochim. Cosmochim. Acta., 52: 2727-2732 https://doi.org/10.1016/0016-7037(88)90041-5
  35. Nealson, K.H and D. Saffarini, 1994. Iron and mangaJlese in anaerobic respiration: environmcntal significance, physiology, and regulation. Annu. Rev. Microbiol., 48: 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  36. Pattan, J.N., 1993. Manganese micronodules: a possib1e indicator of sedimentary environment. Mar Geol., 113: 331-344 https://doi.org/10.1016/0025-3227(93)90026-R
  37. Rescbke S., V. Ittekkot and N. Panin, 2002. The nature of organic matter in the Danube river particles and north-westem Black Sea sediments. Estuarine Coastal Shelf Sci., 54: 563-574 https://doi.org/10.1006/ecss.2000.0665
  38. Schubert, C.J., T.G. Ferdelmrul, B. Strotmann, 2000. Organic matter composition and sulfate reduction ratcs in sediment off Chile. Org Geochem., 31: 351-361 https://doi.org/10.1016/S0146-6380(00)00005-X
  39. Schulz H.D., A. ahmke, U. Schinzel, K. Wallmann and M. Zabel, 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta., 58:2041-2060 https://doi.org/10.1016/0016-7037(94)90284-4
  40. Sundby, B and N. Silverberg, 1985. Manganese fluxes in the benthic boundary layer. Limnol Oceanogr., 30: 372-381 https://doi.org/10.4319/lo.1985.30.2.0372
  41. Takahashi, K., N. Fujitani, M. Yanada and Y. Maita, 2000. Longtenn biogenic particle fluxes in the Bering Sea and thc central subarctic Pacific Ocean, 1990-1995. Deep Sea Res I., 47: 1723-1759 https://doi.org/10.1016/S0967-0637(00)00002-9
  42. Thamdrup, B and D.E. Canfield 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr., 41:1629-1650. https://doi.org/10.4319/lo.1996.41.8.1629
  43. Thamdrup, B., 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol., 16; 41-84