DOI QR코드

DOI QR Code

Role of Two New Phytotoxins in the Pathogenicity of Botrytis cinerea

두 개의 새로운 phytotoxin의 Botrytis cinerea 병원성에시의 역할

  • Kim, Geum-Jung (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Yoon, Mi-Young (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung-Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Myung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 김금정 (한국화학연구원 산업바이오화학연구센터) ;
  • 윤미영 (한국화학연구원 산업바이오화학연구센터) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 최경자 (한국화학연구원 산업바이오화학연구센터) ;
  • 장경수 (한국화학연구원 산업바이오화학연구센터) ;
  • 최용호 (한국화학연구원 산업바이오화학연구센터) ;
  • 박명수 (한국화학연구원 산업바이오화학연구센터) ;
  • 차병진 (충북대학교 식물의학과) ;
  • 김진철 (한국화학연구원 산업바이오화학연구센터)
  • Published : 2009.08.01

Abstract

In the course of study on the roles of phytotoxins in the pathogenicity of Botrytis cinerea, we isolated two novel phytotoxins. They were identified as 3-O-acetyl botcinol and 3-O-acetyl botcinolide. In this study, we investigated correlation between the two phytotoxins and the pathogenicity of B. cinerea. In liquid cultures, the two phytotoxins were not produced by three low pathogenic isolates out of 25 B. cinerea isolates. Among strong or moderate pathogenic isolates, some produced the two phytotoxins, but the others did not. On the other hand, the ethyl acetate extracts of fermentation broths of 10 out of 25 isolates showed phytotoxic activity against various plants tested in a whole plant assay. The phytotoxins were detected in all of the 10 phytotoxic ethyl acetate extracts. In planta, the two phytotoxins were detected in all of the plant tissues infected with strong pathogenic isolates. However, there was no correlation between the ability of B. cinerea isolates to produce the two phytotoxins and their pathogenicities. The two phytotoxins began to detect in tomato plant tissues infected with B. cinerea 2-16 at 3 days after inoculation, increased gradually till 4 days after inoculation, and then decreased. The above results suggest that 3-O-acetyl botcinol and 3-O-acetyl botcinolide are one of pathogenicity factors for B. cinerea, but not a primary determinant of its pathogenicity.

Botrytis cinerea 균주의 병원성에 있어서 phytotoxin의 역할을 규명하는 연구를 하던 중에 B. cinerea 2-16균주가 생산하는 새로운 phytotoxin을 분리 동정하였다. 두 개의 물질은 3-O-acetyl botcinol과 3-O-acetyl botcinolide로 동정되었다. 본 연구는 두 개의 물질과 B. cinerea의 병원성과의 상관관계를 규명하고자 실시하였다. 25개의 B. cinerea 균주 중에서 병원성이 약한 3개의 B. cinerea 균주는 액체배지에서 두 phytotoxin을 생산하지 않았다. 병원성이 강하거나 중간정도인 균주들은 두 phytotoxin을 생산하는 균과 생산하지 않는 균으로 나뉘었다. 한편, 25개의 균주 중에서 10균주의 액체배양액 에틸아세테이트 추출물이 9개의 식물체를 이용한 whole plant assay에서 phytotoxicity를 나타냈으며, 이들 10개 추출물 모두에서 두 phytotoxin이 검출되었다. In planta 실험에서는 병원성이 강한 균주에 감염된 식물조직에서 모두 두 phytotoxin이 검출되었다. 하지만 두 phtotoxin의 생산량과 병원성과는 상관관계를 보이지 않았다. 두 phytotoxin은 B. cinerea 2-16 균주에 감염된 토마토 조직에서 3일째부터 검출되기 시작해 4일째는 가장 크게 증가하였으며 그 후 감소하였다. 이상의 실험 결과 3-O-acetyl botcinol과 3-O-acetyl botcinolide는 B. ciuereo의 발병과정에 있어서 중요한 역할을 할 것으로 추정되지만 병을 일으키는데 일차적인 요인은 아닐 것으로 사료된다.

Keywords

References

  1. Agrios, G N. 2005. Plant pathology(5th edition). Academic press, Inc., New York. 431 pp
  2. Beever, R. E. and Parkers, L. 1993. Mating behaviour and genetics of fungicide resistance of Botrytis cinerea in New Zealand. New Zealand J Crop & HortL Sci. 21: 303-310 https://doi.org/10.1080/01140671.1993.9513786
  3. 최인실, 정영륜, 조광연. 1995. 잿빛곰팡이 병원균 Botrytis cinera균주의 분리 기주별 표현형적 특성. 병원성 및 약제 저항성 변이. 한국균학회지 23:246-256
  4. Coley-Smith, J. R., Verhoeff, K. and Jarvis, W. R. 1980. The biology of Botrytis. Academic Press, London. 318 pp
  5. Deighton, N., Muckenschnabel, I. and Colmenares, A. J. 2001. Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57: 689-692 https://doi.org/10.1016/S0031-9422(01)00088-7
  6. Edlich, w., Lorenz, G, Lyr, H., Nega, E. and Pommer, E. H. 1989 . New aspects on the infection mechanism of Botrytis cinerea Pers. Neth. J Plant Pathol. 95: 53-62 https://doi.org/10.1007/BF01974284
  7. Elad, Y. 1992. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiorum) in various crops. Plant Pathal. 41:417-426 https://doi.org/10.1111/j.1365-3059.1992.tb02436.x
  8. Eiad, Y 1993. Regulators of ethylene biosynthesis or activity as a tool for reducing susceptibility of host plant tissues to infection by Botrytis cinerea. Neth. J Plant Pathol. 99: 105-113 https://doi.org/10.1007/BF01974263
  9. Elad, Y and Evensen, K. 1995. Physiological aspects of resistance to Botryts cinerea. Phytopathology 85: 637-643
  10. Elad, Y, Kohl, J. and Fokkema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur. J Plant Pathol. 100: 315-336 https://doi.org/10.1007/BF01876443
  11. Ellis, M. B. and Waller, J. M. 1974. Sclerotinia fitckeliana (Conidial stage: Botrytis cinerea). CMI Descriptions of Pathogenic Fungi and Bacteria No. 431
  12. Faretra, F. and Pollastro, S. 1993. Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotiniafuckeliana from nine countries. Plant Pathol. 42: 48-52 https://doi.org/10.1111/j.1365-3059.1993.tb02933.x
  13. 구한모, 안승준, 신호철, 도은수, 신미호, 김유석, 김진희, 천세철. 2006. Benzimidazole과 diearboximide계 살균제 저항성 잿빛곰팡이병원균(Botrytis cinerea)에 대한 mepanipyrim의 효과. 한국응용생명학회지 49: 259-265
  14. 권진혁, 손경애. 2005. Botrytis cinerea에 의한 물레나물 잿빛곰팡이병 발생. 한국균학회지 33:89-91 https://doi.org/10.4489/KJM.2005.33.2.089
  15. Hoffman, R., Roebroeck, E. and Heale, B. 1988. Effects of ethylene biosynthesis in carrot root slices on 6- methoxymellein accumulation and resistance to Botrytis cinerea. Physiol. Planta. 73: 71-76 https://doi.org/10.1111/j.1399-3054.1988.tb09195.x
  16. 김금정, 윤미영, 김흥태, 최경자, 장경수, 최용호, 박명수, 차병진, 김진철. 2009. Botrytis clnerea로부터 분리한 두 개의 새로운 phytotoxin의 구조 결정 및 생물활성. 식물병연구 15:112-119
  17. 김종진, 김재원, 이창원, 정영륜. 1997. Botrytis cinerea균주들이 생산하는 ploygalacturonas, laccase, $\beta$-glucosidase의 균주간 활성 및 병원성과의 상관관계. 한국식물병리학회지 13:225-231
  18. Poapst, P. A., Ramsoomair, B. A. and Gourley, C. O. 1979. On the promotion of senescence in Brassica oleracea var. capitata by Alternaria brassicicola and Botrytis cinerea. Can. J Bot. 57: 2378-2386 https://doi.org/10.1139/b79-280
  19. Rebordinos, L., Cantoral, J. M., Prieto, M. V., Hanson, J. R. and Collado, I. G 1996. The phytotoxic activity of some metabolites of Botrytis cinerea. Phytochemistry 42: 383-387 https://doi.org/10.1016/0031-9422(95)00909-4
  20. Rosslenbroich, H. J. and Stuelbler, D. 2000. Botrytis cinereahistory of chemical control and novel fungicides for its management. Crop Prot. 19: 557-561 https://doi.org/10.1016/S0261-2194(00)00072-7
  21. Salinas, J., Wamaar, F. and Verhoeff, K. 1986. Production of cutin hydrolyzing enzymes by Botrytis cinerea in vitro. Phytopathol. Z. 116: 299-307 https://doi.org/10.1111/j.1439-0434.1986.tb00924.x
  22. Sasaki, I. and Nagayama, H. 1994. Purification and characterization of $\beta$-glucosidase from Botrytis cinerea. Biosci. Biotech. Biochem. 59: 100-101 https://doi.org/10.1271/bbb.59.100
  23. Sharrock, K. R. and Labavitch, J. M. 1994. Polygalacturonases inhibitors of Bartlett pear fruits: differential effects on Botrytis cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and on ethylene induction in cell culture. Physiol. Mol. Plant Pathol. 45: 305-319 https://doi.org/10.1016/S0885-5765(05)80061-X
  24. Talma, K. Y, Elad, Y and Yunis, H. 1989. Resistance to diethofencarb(NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38: 86 https://doi.org/10.1111/j.1365-3059.1989.tb01431.x
  25. van Kan, J. A., van't Klooster, J. W., Wagemakers, C. A., Dees, D. C. and van der Vlugt-Bergmans, C. J. 1997. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetrating of gerbera and tomato. Mol. Plant Microbe. Interact. 10: 30-38 https://doi.org/10.1094/MPMI.1997.10.1.30
  26. Wasty, E. H., Farag, S. A., Tarabieh, M. A. and Abd-Elmoety, S. G 1978. Studies on enzymes of different strains of Botrytis cinerea. Phytopathology 92: 168-179 https://doi.org/10.1111/j.1439-0434.1978.tb03598.x