A Convenient Radiolabeling of [$^{11}$C](R)-PK11195 Using Loop Method in Automatic Synthesis Module

$^{11}$C 표지 자동합성장치에서 루프법을 이용한 ($^{11}$C)(R)-PK11195의 간편한 합성법

  • Lee, Hak-Jeong (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Jeong, Jae-Min (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Kim, Hyung-Woo (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Choi, Jae-Yeon (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine and Institute of Radiation Medicine, Seoul National University College of Medicine)
  • 이학정 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 정재민 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 이윤상 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 김형우 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 최재연 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 이동수 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 정준기 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소) ;
  • 이명철 (서울대학교 의과대학 핵의학교실 및 방사선의학연구소)
  • Published : 2009.08.30

Abstract

Purpose: ((R)-1-(2-chlorophenyl)-N-1-[$^{11}$C]methyl-N(1-propyl)-3-isoquinoline carboxamide ((R)-PK11195) is a specific ligand for the peripheral type benzodiazepine receptor and a marker of activated microglia, used to measure inflammation in neurologic disorders. We report here that a direct and simple radiosynthesis of [$^{11}$C](R)-PK11195 in mild condition using NaH suspension in DMF and one-step loop method. Materials and Methods: (R)-N-Desmethyl-PK11195 (1 mg) in DMSO (0.1 mL) and NaH suspension in DMF (0.1 mL) were injected into a semi-prep HPLC loop. [$^{11}$C]methyl iodide was passed through HPLC loop at room temperature. Purification was performed using semi-preparative HPLC. Aliquots eluted at 11.3 min were collected and analyzed by analytical HPLC and mass spectrometer. Results: The labeling efficiency of [$^{11}$C](R)-PK11195 was 71.8$\pm$8.5%. The specific activity was 11.8:$\pm$6.4 GBq/$\mu$mol and radiochemical purity was higher than 99.2%. The mass spectrum of the product eluted at 11.3 min showed m/z peaks at 353.1 (M+1), indicating the mass and structure of (R)-PK11195. Conclusion: By the one-step loop method with the [$^{11}$C]CH3l automated synthesis module, [$^{11}C$](R)-PK11195 could be easily prepared in high radiochemical yield using NaH suspension in DMF.

목적: (R)-1-(2-Chlorophenyl)-N-methyl-N-1-(1-methyl-propyl)-3-isoquinoline carboxamide ((R)-PK11195)는 말초형 벤조디아제핀 수용체 (PBR)의 친화성이 높으며, 활성화된 소교세포(microglia)의 PBR에 선택적으로 결합하는 것으로 알려져 있다. 본 연구에서는 말초형 벤조디아제핀 수용체 (PBR)의 FET용 리간드인[$^{11}$C](R)-PK11195를, 절차가 빠르고 간단한 [$^{11}$C]CH$_3$I 자동합성장치 및 루프법을 도입해서 합성하였다. 대상 및 방법: 사이클로트론에서 $^{14}$N(p,a)$^{11}$C핵반응에 의하여 생산된 [$^{11}$C]Co$_2$를 0.2 M LiAlH$_4$/THF (0.2 mL)로 환원한 다음 HI (1 mL)과 반응하여 [$^{11}$C]CH$_3$I를 생산하였다. 반응용매인 NaH DMF complex (0.1 mL)와 녹인 전구물질 (R)-N-desmethyl-PK11195 (1 mg)을 녹인 DMSO (0.1mL)를 섞은 혼합액을 HPLC의 루프에 미리 주입하고 [$^{11}$C]CH$_3$I를 상온에서 5분 동안 질소가스로 불어준 뒤에 semi-preparative HPLC로 [$^{11}$C](R)-PK11195를 분리하였다. 결과: 전구물질과 [$^{11}$C]CH$_3$I의 [$^{11}$C]메틸화 반응에서의 표지효율은 71.8$\pm$8.5% 이었다. 분리 후 얻은 [$^{11}$C](R)-PK11195의 비방사능은 11.8$\pm$6.4 GBq/$\mu$mol이었으며, 방사화학적 순도는 99.2% 이상이었다. C-11 표지 후 얻어진 (R)-PK11195의 물질의 질량 분석은 m/z 353.1 (M+1)으로 물질구조를 확인 할 수 이었다. 결론: 뇌염증에 의한 활성화 소교세포의 영상화를 위한 PET용 방사성의약품인 [$^{11}$C](R)-PK11195를 반복적으로 생산해야 하는 임상 적용을 위해, 합성절차가 빠르고 간단한 [$^{11}$C]CH$_3$I 자동화 합성장치를 1차 루프 방법을 이용하여 $^{11}$C을 표지 할 수 있었다. 이 연구를 통해서 [$^{11}$C](R)PK11195 표지 할 때 반응 단계를 줄이고 반응을 실온에서 할 수 있어서 표지과정을 보다 단순화할 수 있었으며, NaH의 DMF현탁액을 사용함으로써 보다 안전하게 생산할 수 있게 되었다.

Keywords

References

  1. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [$^{11}$C](R)PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis 2006;21:404-12 https://doi.org/10.1016/j.nbd.2005.08.002
  2. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington's disease. Brain Res Bull 2007;72:148-51 https://doi.org/10.1016/j.brainresbull.2006.10.029
  3. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of [N-methyl-$^{11}$C]PK11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 1994;21:573-81 https://doi.org/10.1016/0969-8051(94)90022-1
  4. Banati RB, Graeber MB. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994;16:114-27 https://doi.org/10.1159/000112098
  5. Schwartz M. Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 2003;23:385-94 https://doi.org/10.1097/01.WCB.0000061881.75234.5E
  6. Kremlev SG, Roberts RL, Palmer C. Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neroimmunol 2004;149:1-9 https://doi.org/10.1016/j.jneuroim.2003.11.012
  7. Chao CC, Hu S, Peterson PK. Modulation of human microglial cell superoxide production by cytokines. J Leukoc Biol 1995;58:65-70 https://doi.org/10.1002/jlb.58.1.65
  8. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res 2005;81:302-13 https://doi.org/10.1002/jnr.20562
  9. Wang X, Chen S, Ma G, Ye M, Lu G. Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mech Ageing Dev 2005;126:1241-54 https://doi.org/10.1016/j.mad.2005.06.012
  10. McGeer EG, McGeer PL. The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 1998;33:371-8 https://doi.org/10.1016/S0531-5565(98)00013-8
  11. McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord 2004;10(Suppl 1):S3-S7 https://doi.org/10.1016/j.parkreldis.2004.01.005
  12. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive acclUl1ulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001;60:161-72 https://doi.org/10.1093/jnen/60.2.161
  13. Sargsyan SA, Monk PN, Shaw PJ. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 2005;51:241-53 https://doi.org/10.1002/glia.20210
  14. Koh S. Microglial Imaging in neurological disorders with PK11195 PET. J Korean Soc Clin Neurophysiol 2007;9:91-7
  15. Parola AL, Yamamura HI, Laird HE. Peripheral-type benzodiazepine receptors. Life Sci 1993;52:1329-42 https://doi.org/10.1016/0024-3205(93)90168-3
  16. Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [$^{11}$C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord 2006;21:89-93 https://doi.org/10.1002/mds.20668
  17. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461-7 https://doi.org/10.1016/S0140-6736(01)05625-2
  18. Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [$^{11}$C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 2003;61:686-9 https://doi.org/10.1212/01.WNL.0000078192.95645.E6
  19. Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K, et al. In vivo imaging of microglial activation with [$^{11}$C](R)-PK11195 PET in corticobasal degeneration. Mov Disord 2004;19:1221-6 https://doi.org/10.1002/mds.20162
  20. Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer's disease. J Nucl Med 1995;36:2207-10
  21. Henkel K, Karitzky J, Schmid M, Mader I, Glatting G, Unger JW, et al. Imaging of activated microglia with PET and [$^{11}$C]PK11195 in corticobasal degeneration. Mov Disord 2004;19:817-21 https://doi.org/10.1002/mds.20040
  22. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638-43 https://doi.org/10.1212/01.wnl.0000222734.56412.17
  23. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 2007;130:1759-66 https://doi.org/10.1093/brain/awm044
  24. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [$^{11}$C](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004;15:601-9 https://doi.org/10.1016/j.nbd.2003.12.012
  25. Rao VL, Bowen KK, Rao AM, Dempsey RJ. Up-regulation of the peripheral-type benzodiazepine receptor expression and [$^{3}$H$]PK11195 binding in gerbil hippocampus after transient forebrain ischemia. J Neurosci Res 2001;64:493-500 https://doi.org/10.1002/jnr.1101
  26. Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, et al. Imaging glial cell activation with [$^{11}$C]-RPK11195 in patients with AIDS. J Neurovirol 2005;11:346-55 https://doi.org/10.1080/13550280500187351
  27. Mankowski JL, Queen SE, Tarwater PJ, Adams RJ, Guilarte TR. Elevated peripheral benzodiazepine receptor expression in simian immunodeficiency virus encephalitis. J Neurovirol 2003;9:94-100 https://doi.org/10.1080/13550280390173283
  28. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997;50:345-53 https://doi.org/10.1002/(SICI)1097-4547(19971015)50:2<345::AID-JNR22>3.0.CO;2-5
  29. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, et al. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 2005;11:127-34 https://doi.org/10.1191/1352458505ms1140oa
  30. Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, et al. PET visualization of microglia in multiple sclerosis patients using [$^{11}$C]PK11195. Eur J Neurol 2003;10:257-64 https://doi.org/10.1046/j.1468-1331.2003.00571.x
  31. Debruyne JC, Van Laere KJ, Versijpt J, De Vos F, Keppen J, Strijckmans K, et al. Semiquantification of the peripheral-type benzodiazepine ligand [[$^{11}$C]PK11195 in normal human brain and application in multiple sclerosis patients. Acta Neurol Belg 2002;102:127-35
  32. Chen MK, Guilarte TR. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol Sci 2006;91:532-9 https://doi.org/10.1093/toxsci/kfj172
  33. Cagnin A, Gerhard A, Banati RB. The concept of in vivo imaging of neuroinflammation with [[$^{11}$C](R}-PK11195 PET. Ernst Schering Res Found Workshop 2002:179-91
  34. Banati RE, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321-37 https://doi.org/10.1093/brain/123.11.2321
  35. Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, et al. In vivo imaging of activated microglia using [$^{11}$C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 2000;11:2957-60 https://doi.org/10.1097/00001756-200009110-00025
  36. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [$^{11}C$](R)-PK11195 PET study. Neuroimage 2005;24:591-5 https://doi.org/10.1016/j.neuroimage.2004.09.034
  37. Imaizumi M, Kim HJ, Zoghbi SS, Briard E, Hong J, Musachio JL, et al. PET imaging with [$^{11}$C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 2007;411:200-5 https://doi.org/10.1016/j.neulet.2006.09.093
  38. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [$^{11}$C]PK11195. Neurology 2000;55:1052-4 https://doi.org/10.1212/WNL.55.7.1052
  39. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PKI1195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997;50:345-53 https://doi.org/10.1002/(SICI)1097-4547(19971015)50:2<345::AID-JNR22>3.0.CO;2-5
  40. Carnsonne R, Crouzel C, Comar D, Maziere M, Prenant C, Sastre J, et al. Synthesis of N-($^{11}$C) methyl, N-(methyl-1 propyl), (chloro-2 phenyl)-1 isoquinoleine carboxamide-3 (PK 11195): A new ligand for peripheral benzodiazepine receptors. J Label Compd Radiopharm 1984;21:985-91 https://doi.org/10.1002/jlcr.2580211012
  41. Cremer JE, Hume SP, Cullen BM, Myers R, Manjil LG, Turton DR, et al. The distribution of radioactivity in brains of rats given [N-methyl-$^{11}$C]PK 11195 in vivo after induction of a cortical ischaemic lesion. Int J Rad Appl Instrum B 1992;19:159-66 https://doi.org/10.1016/0883-2897(92)90003-H
  42. Hashimoto K, Inoue O, Suzuki K, Yamasaki T, Kojima M. Synthesis and evaluation of $^{11}$C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med 1989;3:63-71 https://doi.org/10.1007/BF03164587
  43. Choe YS. Radiolabeling methods used for preparation of molecular probes. Nucl Med Mol Imaging 2004;38:121-30
  44. Larsen P, Ulin J, Dahlstrom K, Jensen M. Synthesis of [$^{11}$C]iodomethane by iodination of [$^{11}$C]methane. Appl Radiat Isot 1997;48:153-7 https://doi.org/10.1016/S0969-8043(96)00177-7
  45. Crouzel C, Langstrom B, Pike VW, Coenen HH. Recommendations for a practical production of [$^{11}$C]methyl iodide. Appl Radiat Isot 1987;38:601-3 https://doi.org/10.1016/0883-2889(87)90123-7
  46. Rahman O, Kihlberg T, Langstrom B. Synthesis of N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-[$^{11}$C]carboxam ide ([$^{11}$C-carbonyl]PK11195) and some analognes using [$^{11}$C]carbon monoxide and 1-(2-chlorophenyl)isoquinolin-3-yl trifiate. J Am Chem Soc Perkin Trans 1 2002:2699-703
  47. Wilson AA, Garcia A, Jin L, Houle S. Radiotracer synthesis from [$^{11}$C]-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol 2000;27:529-32 https://doi.org/10.1016/S0969-8051(00)00132-3
  48. Lee HJ, Jeong JM, Lee Y, Kim HW, Lee E, Lee DS, et al. Radiosynthesis of [$^{11}$C]6-OH-BTA-1 in different media and confirmation of reaction by-products. Nucl Med Mol Imaging 2007;41:241-6
  49. Wilson AA, Garcia A, Chestakova A, Kung H, Houle S. A rapid one-step radiosynthesis of the ${\beta}$-amyloid imaging radiotracer N-methyl-[$^{11}$C]2-(4'-methylaminophenyl)-6-ydroxybenzothiazole ([$^{11}$C]-6-OH-BTA-1). J Label Compd Radiopharm 2004;47:679-82 https://doi.org/10.1002/jlcr.854
  50. Bachman DL, Wolf PA, Linn R, Knoefel JE, Cobb J, Belanger A, et al. Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 1992;42:115-9 https://doi.org/10.1212/WNL.42.1.115