DOI QR코드

DOI QR Code

Production of Ginsenoside-Rg3 Enriched Yeast Biomass Using Ginseng Steaming Effluent

수삼 증자 시 생성되는 유출액을 이용한 ginsenoside-Rg3 강화 효모 제조

  • Published : 2009.09.30

Abstract

To produce ginsenoside-Rg$_3$ enriched edible yeast, ginseng steaming effluent (GSE) was used for yeast cultivation in this study. Four kinds of edible yeasts were cultured in sterilized GSE (2% w/v, pH 6.5), without any nutrient, for 48 h at 30$^{\circ}C$, and their growth and ginsenoside compositions were determined. Among the yeasts, Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of Saccharomyces cerevisiae biomass was produced from 1 g of GSE solid and ginsenoside-Rg$_3$ contents was determined with 0.033 mg. Saccharomyces cerevisiae also showed the best overall acceptability, with a herbal and fermentative flavor and a slightly bitter taste. From these data, we conclude that Saccharomyces cerevisiae is the excellent strain for production of ginsenoside-Rg$_3$ enriched edible yeast using GSE.

Keywords

References

  1. Chasteen TG and Bentley R. Biomethylation of selenium and tellurium. microorganisms and plants. Chem Rev. 103: 1-25 (2003) https://doi.org/10.1021/cr010210+
  2. Choi MH, Ji GE, Koh KH, Ryn YW, Jo DH and Park YH. Use of waste Chinese cabbage as a substrate for yeast biomass production. Bioresource Technol. 83: 251-253 (2002) https://doi.org/10.1016/S0960-8524(01)00232-2
  3. Choi MH and Park YH. Growth of Pichia guilliermondii A9, an osmotolerant yeast, in waste brine generated from Kimchi production. Bioresource Technol. 70: 231-236 (1999) https://doi.org/10.1016/S0960-8524(99)00049-8
  4. Chanda S and Chakrabatri S. Plant origin liquid waste : a resource for single cell protein production by yeast. 57: 51-54 (1996) https://doi.org/10.1016/0960-8524(96)00053-3
  5. Hang YD, Woodams EE and Hang LE. Utilization of corn silage juice by Klyuveromyces marxianus. Bioresource Technol. 86: 305-307 (2003) https://doi.org/10.1016/S0960-8524(02)00170-0
  6. Hongfei Y, Zhiang C, Zhenxin G and Yongbin H. Optimization of natural fermentative medium for seleniumenriched yeast by D-optimal mixture design. LWT-Food Sci. Technol. 42: 327-331 (2009) https://doi.org/10.1016/j.lwt.2008.04.002
  7. Lee SH, Ahn SD, Rho SY and Shou TU. A study preparation and binding properties of germanium-fortified yeast. J Korean Soc Appl Biol Chem. 48: 382-387 (2005)
  8. Suhajda A, Hegoczki J, Janzso B, Pais I and Vereczkey G. Preparation of selenium yeasts I. Preparation of seleniumenriched Saccharomyces cerevisiae. J Trace Elements Med Biol. 14: 43-47 (2000) https://doi.org/10.1016/S0946-672X(00)80022-X
  9. Oh SW, Lee S, Lee HJ and Han ES. Studies on the Electrofusion applied to the yeast to produce high quality of organic germanium. Korean J Food Sci Technol. 38: 712-716 (2006)
  10. Demirci A, Pometto AL and Cox DJ. Enhanced organically bound selenium yeast production by fed-batch fermentation. J Agric Food Chem. 47: 2496-2500 (1999) https://doi.org/10.1021/jf9811976
  11. Lynn MR and Geoffrey MG. Mutants of Saccharomyces cerevisiae defective in vacuolar function a role for the vacuole in toxic metal ion detoxification. Microbiol Lett. 152: 293-298 (1997) https://doi.org/10.1111/j.1574-6968.1997.tb10442.x
  12. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK and Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod. 63: 1702-1704 (2000) https://doi.org/10.1021/np990152b
  13. Keum YS, Han SS, Chun KS, Park, KK, Park J H, Lee SK and Surh YJ. Inhibitory effects of the ginsenoside-$\text Rg_3$ on phorbol ester-induced cyclooxygenase-2 expression, NFkappaB activation and tumor promotion. Mutat Res. 323: 75-85 (2003) https://doi.org/10.1016/0165-7992(94)90048-5
  14. Park S, Kim EH, Na HK and Surh YJ. KG-135 inhibits COX-2 expression by blocking the activation of JNK and AP-1 in phorbol ester-stimulated human breast epithelial cells. Ann NY Acd Sci. 1095: 545-553 (2007) https://doi.org/10.1196/annals.1397.059
  15. Kim ND, Kang SY, Park JH and Schini-kerth VB. Ginsenoside-$\text Rg_3$ mediate endothelium-dependent relaxation in response to ginsenosides in rat aorta : role of $\text K^+$ channels. Eur J Pharmacol. 367: 41-49 (1999) https://doi.org/10.1016/S0014-2999(98)00898-X
  16. Kim JH, Lee JH, Jeong SM, Lee BH, Yoon IS, Lee JH, Choi SH, Kim DH, Park TK, Kim BK and Nah SY. Stereospecific effects of ginsenoside-$\text Rg_3$ epimers on swine coronary artery contractions. Biol Pharm Bull. 29: 365-370 (2006) https://doi.org/10.1248/bpb.29.365
  17. Kim YC, Kim SR, Markelonis GL and Oh TH. Ginsenoside $\text Rb_1$ and $\text Rg_3$ protect cultured rat cortical cells from glutamate-induced nerodegeneration. J Neurosci Res. 53: 426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  18. Tian JF, Geng M, Jiang Y, Yang J, Jiang W, Wang C and Lin K. Neuroprotective effect of 20(s)-ginsenoside $\text Rg_3$ on cerebral ischemia in rats. Neurosci Lett. 374: 92-99 (2005) https://doi.org/10.1016/j.neulet.2004.10.030
  19. Chen F, Eckman EA and Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenoside. FASEB J. 20: 1269-1271 (2006) https://doi.org/10.1096/fj.05-5530fje
  20. Lee SH, Jung BH, Kim SY, Lee EH and Chung BC. The antistress effect of ginseng total saponin and ginsenoside $\text Rg_3$ and $\text Rb_1$ evaluated by brain polyamine level under immobilization stress. Pharmacol Res. 54: 46-49 (2006) https://doi.org/10.1016/j.phrs.2006.02.001
  21. Kim JH, Lee BH and Lee JS. Production of ribonucleotides by autolysis of Hansenula anomala grown on ginseng steaming effluent. J Biosci Bioeng. 93: 318-321 (2002) https://doi.org/10.1016/S1389-1723(02)80035-4
  22. Kim JH, Lee KS, Kim NM and Lee JS. Production and characterization of chitosan from ginseng steaming effluent by Mucor miehei. J Microbiol Biotechnol. 12: 760-765 (2002)
  23. Kim NM, So SH, Lee SK, Song JE, Seo DS and Lee JS. Physiological functionality and enzyme activity of biomass from Pichia anomala grown on ginseng steaming effluent. Microbiology 36: 148-151 (2008)
  24. Kim JH, Lee DH, Jeong SC, Chung KS and Lee JS. Characterization of antihypertensive angiotensine Ⅰ converting enzyme inhibitor from Saccharomyces cerevisiae. J Microbiol Biotechnol. 14: 1318-1323 (2004)
  25. Lee JO, Kim Y O, Shin DH, Shin JH and Kim EK. Production of selenium peptide by autolysis of Saccharomyces cerevisiae. J Microbiol Biotechnol. 16: 1041-1046 (2006)
  26. Ali D and Anthony L P. Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem. 47: 2491-2495 (1999) https://doi.org/10.1021/jf981198y
  27. Kown SW, Han SB, Park IH, Kim JM, Park MK and Park J H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 921: 335-339 (2001) https://doi.org/10.1016/S0021-9673(01)00869-X

Cited by

  1. Grown on Ginseng-Steaming Effluent vol.38, pp.2, 2010, https://doi.org/10.4489/MYCO.2010.38.2.153
  2. ) vol.38, pp.3, 2010, https://doi.org/10.4489/MYCO.2010.38.3.206
  3. Growth Profile of Some Yeasts in Pear Marc Extracts vol.39, pp.3, 2011, https://doi.org/10.4489/KJM.2010.39.3.229
  4. Production of Tyrosinase Inhibitor from Saccharomyces cerevisiae vol.40, pp.1, 2012, https://doi.org/10.4489/KJM.2012.40.1.060
  5. vol.42, pp.4, 2014, https://doi.org/10.5941/MYCO.2014.42.4.368
  6. Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1194