DOI QR코드

DOI QR Code

포물선 아치의 횡-비틂 좌굴 강도

Lateral-Torsional Buckling Strength of Parabolic Arches

  • 문지호 (고려대학교 건축.사회환경공학과) ;
  • 윤기용 (선문대학교 토목공학과) ;
  • 이태형 (건국대학교 토목공학과) ;
  • 이학은 (고려대학교 건축.사회환경공학과)
  • 투고 : 2008.09.05
  • 심사 : 2008.12.17
  • 발행 : 2009.03.31

초록

본 연구에서는 포물선 아치의 횡-비틂 좌굴 강도에 관한 연구를 수행하였다. 포물선 아치는 아치의 중립축을 따라 곡률이 변하므로 일정한 곡률을 갖는 원형 아치의 경우보다 횡-비틂 좌굴 강도식을 유도하는 것이 복잡하며, 이에 대한 연구가 미흡한 실정이다. 본 연구에서는 ?의 효과를 고려하여 변곡률을 갖는 아치의 횡-비틂 좌굴식을 유도하고 포물선 아치의 좌굴강도를 계산하기 위하여 유한차분법을 이용한 수치해법을 제안하였다. 이러한 수치해법은 기존 연구자 및 유한요소해석 결과와 비교하였으며, 그 타당성을 검증하였다. 마지막으로, 변수해석을 수행하여 라이즈비의 영향에 따른 원형과 포물선 아치의 횡-비틂 좌굴 강도를 비교 분석하였다.

The lateral-torsional buckling strengths of the parabolic arches are investigated in this study. The curvatures of a parabolic arch vary along the center line of the arch. Thus, the problem is much more complicated comparing that of arches with constant curvature such as circular arches. Moreover, most of previous studies are limited to the circular arches. In this study, lateral-torsional buckling equations are derived for the arches with varying curvatures considering the warping effects. To obtain the buckling strength of parabolic arches, numerical solutions based on the finite difference technique are provided. The numerical solutions are compared with the those of previous researchers and finite element analyses. Then, the lateral-torsional strengths of parabolic arches are successfully verified. Finally, comparison study of critical buckling loads of parabolic arches with those of circular arches for the various rise to span ratios are discussed.

키워드

참고문헌

  1. ABAQUS (2001) ABAQUS standard user’s manual version 6.2, Hibbit, Karsson and Sorensen Inc..
  2. Chajes, A. (1974) Principles of structural stability theory. Prentice-Hall, Inc. Englewood Cliffs, NJ.
  3. Kang, Y.J. and Yoo, C.H. (1994) Thin-walled curved beams II: analytical solutions for buckling of arches. J. Engrg. Mech, ASCE, Vol. 120, No. 10, pp. 2102-2125. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2102)
  4. Lim, N.H. and Kang, Y.J. (2004) Out-of-plane stability of circular arches. Int. J. Mech. Sci, Vol. 46, pp. 1115-1137. https://doi.org/10.1016/j.ijmecsci.2004.08.008
  5. Love, A.E.H. (1944) A treatise on the mathematical theory of elasticity. 4th ed. Dover Publications, New York.
  6. Ojalvo, M., Demuts, E., and Tokarz, F.J. (1969) Out-of-plane buckling of curved members. J. Struct. Div., ASCE, Vol. 95, No. 10, pp. 2305-2316.
  7. Papangelis, T.P. and Trahair, N.S. (1987) Flexural-torsional buckling of arches. J. Struct. Engrg., ASCE, Vol. 113, No. 4, pp. 889-906. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(889)
  8. Rajasekaran, S. and Padmanabhan, S. (1989) Equations of curved beams. J. Engrg. Mech., ASCE, Vol. 115, No. 5, pp. 1094-1111. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1094)
  9. Timosheko, S.P. and Gere, J.M. (1961) Theory of elastic stability, 2nd ed. McGraw-Hill Book Co., Inc..
  10. Tokarz, F.J. and Sandhu, R.S. (1972) Lateral-torsional buckling of parabolic arches. J. Struct. Div., ASCE, Vol. 98, No. 5, pp. 1161-1179.
  11. Tufekci, E. and Dogruer, O.Y. (2006) Exact solution of out-of-plane problems of an arch with varying curvature and cross section. J. Engrg. Mech., ASCE, Vol. 132, No. 6, pp. 600-609. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:6(600)
  12. Vlasov, V.Z. (1961) Thin walled elastic beam, 2nd ed., National Science Foundation, Washington (DC).
  13. Wen, R.K. and Lange, J. (1981) Curved beam element for buckling analysis. J. Struct. Div., ASCE, Vol. 107, No. 11, pp. 2053-2067.