DOI QR코드

DOI QR Code

Spatial Variation of Void Ratio and Permeability by Smear and Its Changing Behavior during Consolidation :Part I. Physical Model Test and Analysis

스미어로 의한 점성토 지반의 간극비 및 투수계수의 위치별 차이와 압밀 중 변화 거동에 대한 연구 : Part I. 실험 및 거동 분석

  • 윤찬영 (강릉원주대학교 토목공학과) ;
  • 손대진 (현대건설(주) 토목환경사업부 설계팀) ;
  • 천성호 (대림산업(주) 기술연구소 토목연구지원팀) ;
  • 정충기 (서울대학교 건설환경공학부)
  • Received : 2008.09.01
  • Accepted : 2009.05.19
  • Published : 2009.07.31

Abstract

In this research, the ground with smeared zone was reconstructed using the large consolidation test apparatus. And the reconstituted kaolinite samples at different locations were retrieved for the oedometer test. From the oedometer test results the permeability- void ratio-effective stress behavior was investigated. Based on the experimental analysis, spatial differences of permeability according to the drainage distance by both smear and radial drainage consolidation reduced as the consolidation proceeds and eventually disappeared in normally consolidated region. And the spatial variation of permeability by radial drainage consolidation showed larger differences in smaller extent than the spatial variation of permeability by smear.

본 연구에서는 대형압밀시험 장비를 이용하여 연직배수재 타설로 스미어가 발생된 지반을 모사하고 실험을 수행하였다. 스미어가 발생한 카올리나이트 모형지반에서 배수재로부터의 거리에 따라 시료를 채취하고 이를 이용하여 표준압밀시험을 실시하였으며, 이로부터 투수계수-간극비-유효응력의 3차원 거동을 분석하였다. 실험결과 스미어 발생으로 나타나는 위치별 투수계수 차이와 스미어와 무관하게 방사배수 압밀 중 나타나는 위치별 투수계수 차이는 모두 압밀진행에 따라 감소하며 정규 압밀영역에서 거의 사라진다. 또한 스미어로 인한 것보다 방사배수 압밀로 인한 위치별 투수계수 차이가 상대적으로 더 작은 영역에서 더 크게 나타났다.

Keywords

References

  1. 윤찬영, 정충기(2005) 연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향, 한국지반공학회논문집, 한국지반공학회, 제21권 제6호, pp. 5-18.
  2. 윤찬영, 우상인, 백승경, 정충기(2007) 점증하중 재하 지반의 계측기반 침하 예측 방법의 개발, 대한토목학회논문집, 대한토목학회, 제27권 제6C호, pp. 425-432.
  3. 윤찬영, 천성호, 정충기, 이원택(2008) 방사배수 압밀 중 위치별 간극수압 측정을 통한 투수계수와 관련물성치의 결정방법,대한토목학회논문집, 대한토목학회, 제28권 제1C호, pp. 9-17.
  4. 정하익 등(1999) 연약지반의 압밀특성에 관한 연구.I 연구보고서,한국토지공사
  5. Al-Tabbaa, A. (1995) Excess pore pressure during consolidation and swelling with radial drainage. Geotechnique, Vol. 45, No. 4, pp. 701-707. https://doi.org/10.1680/geot.1995.45.4.701
  6. Almeida, M.S.S., Santa Maria, P.E.L., Martins, I.S.M., Spotti, A.P., and Coelho, L.B.M. (2000) Consolidation of a very soft clay with vertical drains. Geotechnique, Vol. 50, No. 6, pp. 633-643. https://doi.org/10.1680/geot.2000.50.6.633
  7. Atkinson, J.H., Evans, J.S., and Ho, E.W.L. (1985) Non-uniformity of triaxial samples due to consolidation with radial drainage. Geotechnique, Vol. 35, No. 3, pp. 353-355. https://doi.org/10.1680/geot.1985.35.3.353
  8. Baek, W. and Moriwaki, T. (2004) Internal behavior of clayey ground improved by vertical drains in 3D-Consolidation process. Soils and Foundations, Vol. 44, No. 3, pp. 25-37. https://doi.org/10.3208/sandf.44.3_25
  9. Bergado, D.T., Asakami, H., Alfaro, M.C. and Balasubramaniam, A.S. (1991) Smear effects of vertical drains on soft bangkok clay. Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 10, pp. 1509-1530. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1509)
  10. Bo, M. W., Bawajee, R., Chu, J., and Choa, V. (2000) Investigation of smear zone around vertical drain, 3rd International Conference on Ground Improvement Techniques, pp. 109-114.
  11. Hansbo, S., Jamiolkowski, M., and Kok, L. (1981) Consolidation by vertical drains. Geotechnique, Vol. 31, No. 1, pp. 45-66. https://doi.org/10.1680/geot.1981.31.1.45
  12. Hird, C.C., Pyrah, I.C. and Russell, D. (1992) Finite element modelling of vertical drains beneath embankments on soft ground. Geotechnique, Vol. 42, No. 3, pp. 499-511. https://doi.org/10.1680/geot.1992.42.3.499
  13. Hird, C.C. and Moseley, V.J. (2000) Model study of seepage in smear zones around vertical drains in layered soil. Geotechnique, Vol. 50, No. 1, pp. 89-97. https://doi.org/10.1680/geot.2000.50.1.89
  14. Indraratna, B. and Redana, I.W. (1998) Laboratory determination of smear zone due to vertical drain installation. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 2, pp. 180-184. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(180)
  15. Jamiolkowski, M. and Lancellotta, R. (1981) Consolidation by vertical drains: Uncertainties involved in prediction of settlement rates, 10th ICSMFE - panel discussion, Session 1, Rotterdam, Netherlands, pp. 593-596.
  16. Jamiolkowski, M., Lancellotta, R., and Wolski, W. (1983) Pre-compression and speeding up consolidation, general report. Spec. Session 6, Proc. 8th Eur. Conf. Soil Mech. and Found. Engeg., Balkema, Rotterdam, Netherlands, pp. 1201-1226.
  17. Leroueil, S., Bouclin, G., Tavenas, F., Bergeron, L., and La Rochelle, P. (1990) Permeability anisotropy of natural clays as a function of strain. Canadian Geotechnical Journal, Vol. 27, pp. 568-579. https://doi.org/10.1139/t90-072
  18. Leroueil, S., Lerat, P., Hight, D.W., and Powell, J.J.M. (1992) Hydraulic conductivity of a recent estuarine silty clay at Bothkennar. Geotechnique, Vol. 42, No. 2, pp. 275-288. https://doi.org/10.1680/geot.1992.42.2.275
  19. Little, J.A., Muir Wood, D., Paul, M.A., and Bouazza, A. (1992) Some laboratory measurements of permeability of Bothkennar clay in relation to soil fabric. Geotechnique, Vol. 42, No. 2, pp. 355-361. https://doi.org/10.1680/geot.1992.42.2.355
  20. Mesri, G. and Choi, Y.K. (1985) Settlement analysis of embankments on soft clay. Journal of the Geotechnical Engineering, Vol. 111, No. 4, pp. 441-464. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441)
  21. Mesri, G., Feng, T.W., Ali, S., and Hayat, T.M. (1994) Permeability characteristics of soft clays, 13th ICSMFE, New Delhi, India, pp. 187-192.
  22. Onoue, A., Ting, N., Germain, J.T., and Whitman, V. (1992) Permeability of disturbed zone around vertical drains. Applied Ground Improvement Techniques, Vol. 2, pp. 163-174, Bangkok, Thailand.
  23. Pyrah, I.C., Smith, I.G.N., Hull, D. and Tanaka, Y.(1999), Non-uniform consolidation around vertical drains installed in soft ground. Geotechnical Engineering for Transportation Infrastructure, Balkema, pp. 1563-1569.
  24. Sharma, J. S. and Xiao, D. (2000) Characterization of a smear zone around vertical drains by large-scale laboratory tests. Can. Geotech. J., Vol. 37, pp. 1265-1271. https://doi.org/10.1139/cgj-37-6-1265
  25. Taylor, D. W. (1948) Fundamentals of Soils Mechanics, John Wiley, New York.