초록
본 연구에서 Euler-Lagrange 식을 사용하여 속도포텐셜로 표현되는 확장형 완경사방정식을 유도하였다. 먼저, Euler-Lagrange 식을 사용하여 흐름함수로 표현된 확장형 완경사방정식을 유도한 Kim과 Bai(2004)의 유도과정을 따라가면서 속도 표텐셜로 표현된 확장형 완경사방정식과의 관계를 찾았다. 속도포텐셜로 표현된 Euler-Lagrange 식을 찾아낸 다음 고차의 수심변화 항을 유도하였다. 본 연구에서 유도된 확장형 완경사방정식은 기존의 식인 Massel(1993)의 식과 Chamberlain과 Porter(1995)의 식과 정확히 일치하였다. 본 연구의 연구 성과는 확장형 완경사방정식의 유도 방법을 새로 제시하여 해안공학의 영역을 넓히는데 의의가 있다.
In this study, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. First, we follow Kim and Bai (2004) who derive the complementary mild-slope equation in terms of the stream function using the Euler-Lagrange equation and we compare their equation to the existing extended mild-slope equations of the velocity potential. Second, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. In the developed equation, the higher-order bottom variation terms are newly developed and found to be the same as those of Massel (1993) and Chamberlain and Porter (1995). The present study makes wide the area of coastal engineering by developing the extended mild-slope equation with a way which has never been used before.