웹서비스 유사성 평가 방법들의 실험적 평가

Evaluation of Web Service Similarity Assessment Methods

  • 황유섭 (서울시립대학교 경영대학)
  • Hwang, You-Sub (Department of Business Administration, College of Business & Economics, University of Seoul)
  • 투고 : 2009.11.11
  • 심사 : 2009.11.30
  • 발행 : 2009.12.31

초록

월드와이드웹(WWW)은 유용한 정보를 포함하는 자료들의 집합에서 유용한 작업을 수행할 수 있는 서비스들의 집합으로 변화하고 있다. 새롭게 등장하고 있는 웹서비스 기술은 향후 웹의 기술적 변화를 추구하며 최근의 웹의 변화에 중요한 역할을 수행할 것으로 기대된다. 웹서비스는 어플리케이션 간의 통신을 위한 호환성 표준을 제시하며 기업 내/외를 아우를 수 있는 어플리케이션 상호작용 및 통합을 촉진한다. 웹서비스를 서비스 중심 컴퓨팅환경으로서 운용하기 위해서는 웹서비스 저장소는 조직화되어 있어야 할 뿐 아니라, 사용자들의 요구에 맞는 웹서비스 컴포넌트를 찾을 수 있는 효율적인 도구들을 제공하여야 한다. 서비스 중심 컴퓨팅을 위한 웹서비스의 중요성이 증대됨에 따라 웹서비스 발견을 효율적으로 제공할 수 있는 기법의 수요 또한 증대된다. 웹서비스 발견을 위한 많은 기법들이 제안되어 왔지만, 대부분의 선행연구들은 활용하기에는 제대로 발달하지 못하였거나 특정 도메인에 너무 치중하여 일반화하기 어려웠다. 이 논문에서는 군집화기법과 XML기반의 서비스 기술표준인 WSDL의 의미적 가치를 활용하여 다수의 웹서비스를 군집화하는 프레임워크를 제안한다. 웹서비스 발견이라는 연구영역에 최초로 데이터마이닝 기법을 적용한 연구이다. 본 논문에서 제안하는 방식은 여러 흥미로운 요소들이 있다: (1) 서비스 사용자와 제공자들의 사전지식 요구를 최소화한다 (2) 특정 도메인에 과도하게 치중한 온톨로지를 피한다 (3) 웹서비스들 간의 의미론적 관계를 시각화할 수 있다. 이 논문에서 인공신경 정신망 네트워크를 기반으로 하여 프로토타입 시스템을 개발하였으며, 실제 운용되고 있는 웹서비스 저장소로부터 획득한 실제 웹서비스들을 사용하여 제안하는 웹서비스 조직화 프레임워크를 실증적으로 평가하였으며 제안하는 방식의 효용성을 보여주는 실험결과를 보고한다.

The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component based software development to promote application interaction and integration both within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web service repositories not only be well-structured but also provide efficient tools for developers to find reusable Web service components that meet their needs. As the potential of Web services for service-oriented computing is being widely recognized, the demand for effective Web service discovery mechanisms is concomitantly growing. A number of techniques for Web service discovery have been proposed, but the discovery challenge has not been satisfactorily addressed. Unfortunately, most existing solutions are either too rudimentary to be useful or too domain dependent to be generalizable. In this paper, we propose a Web service organizing framework that combines clustering techniques with string matching and leverages the semantics of the XML-based service specification in WSDL documents. We believe that this is one of the first attempts at applying data mining techniques in the Web service discovery domain. Our proposed approach has several appealing features : (1) It minimizes the requirement of prior knowledge from both service consumers and publishers; (2) It avoids exploiting domain dependent ontologies; and (3) It is able to visualize the semantic relationships among Web services. We have developed a prototype system based on the proposed framework using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web service registries. We report on some preliminary results demonstrating the efficacy of the proposed approach.

키워드

참고문헌

  1. http://www.census.gov/epcd/www/naics.html.
  2. http://www.unspsc.org/.
  3. Sabou, M. and J. Pan, "Towards Improving Web Service Repositories through Semantic Web Techniques", Web Semantics : Science, Services and Agents on the World Wide Web, Vol.5, No.2(2007), 142-152. https://doi.org/10.1016/j.websem.2006.11.004
  4. Marchionini, G. and B. Shneiderman, "Finding facts vs. browsing knowledge in hypertext systems", IEEE Computer, Vol.21, No.3, (1988), 70-79.
  5. Marchionini, G., "An invitation to browse : Designing full text systems for novice users", Canadian Journal of Information Science, Vol.12, No.3(1987), 69-79.
  6. Manber, U., M. Smith, and B. Gopal, "WebGlimpse-Combining Browsing and Searching", in Proceedings of the USENIX 1997 Annual Technical Conference, Anaheim, CA. 1997.
  7. Wu, J. and Z. Wu. "Similarity-based Web Service Matchmaking", in Proceedings of the 2005 IEEE International Conference on Services Computing (SCC'05), 2005.
  8. Purtilo, J. M. and J. M. Atlee, "Module reuse by interface adaptation", Software Practice and Experience, Vol.21, No.6(1991), 539-556. https://doi.org/10.1002/spe.4380210602
  9. Zaremski, A. M. and W. J. M., "Signature Matching: a Tool for Using Software Libraries", ACM Transactions on Software Engineering and Methodology, Vol.4, No.2(1995), 146-170. https://doi.org/10.1145/210134.210179
  10. Zaremski, A. M. and J. M. Wing, "Specification matching of software components", ACM Transactions on Software Engineering and Methodology, Vol.6, No.4(1997), 333-369. https://doi.org/10.1145/261640.261641
  11. W3C Web Ontology Working Group, OWL Web Ontology Language Overview, http:// www.w3.org/TR/owl-features/.
  12. Paolucci, M., T. Kawamura, T. Payne, and K. Sycara, "Importing the Semantic Web in UDDI", in Proceedings of the First International Semantic Web Conference (ICWC 2002), 2002.
  13. Paolucci, M., T. Kawamura, T. Payne, and K. Sycara, "Semantic Matching of Web Services Capabilities", in Proceedings of the First International Semantic Web Conference (ISWC2002), 2002.
  14. Gonzalez-Castillo, J., D. Trastour, and C. Bartolini. "Description Logics for Matchmaking of Services", in Proceedings of the Workshop on Applications of Description Logics, Vienna, Austria, 2001.
  15. Li, L. and I. Horrocks, "A Software Framework for Matchmaking Based on Semantic Web Technology", International Journal of Electronic Commerce, Vol.8, No.4(2004), 331-339.
  16. Gao, X., J. Yang, and M. P. Papazoglou, "The Capability Matching of Web Services", in Proceedings of IEEE Fourth International Symposium on Multimedia Software Engineering (MSE'02), 2002.
  17. Benatallah, B., M. Hacid, A. Leger, C. Rey, and F. Toumani, "On Automating Web Services Discovery", Journal on Very Large Data Bases, Vol.14, No.1(2005), 84-96. https://doi.org/10.1007/s00778-003-0117-x
  18. Benatallah, B., M.-S. Hacid, and C. Rey, "Semantic reasoning for Web Services discovery", in Proceedings of the Workshop on E-Service and the Semantic Web, 2003.
  19. Gannod, G. C. and S. Bhatia, "Facilitating Automated Search for Web Services", in Proceedings of the IEEE International Conference on Web Services, San Diego, California, USA, 2004.
  20. Cardoso, J. and A. Sheth, "Semantic E-Workflow Composition", Journal of Intelligent Information Systems, Vol.21, No.3(2003), 191-225. https://doi.org/10.1023/A:1025542915514
  21. Manber, U., Foreword. In Modern Information Retrieval, ed. R. Baeza-Yates and B. Ribeiro-Neto. Reading, M A: Addison-Wesley, 5-8, 1999.
  22. Dong, X., J. Madhava, and A. Halevy, "Similarity Search for Web Services", in Proceedings of VLDB Conference, Toronto, Canada, 2004.
  23. Dong, X., J. Madhavan, and A. Halevy, "Mining Structures for Semantics", ACM SIGKDD Explorations Newsletter, Vol.6, No.2(2004), 53-60. https://doi.org/10.1145/1046456.1046463
  24. HeB, A., E. Jonston, and N. Kushmerick, "Semi-Automatically Annotating Semantic Web Services (Extended Abstract)", in Proceedings of Semantic Web Conference, 2004.
  25. HeB, A. and N. Kushmerick, "Machine Learning for Annotating Semantic Web Services", in Proceedings of AAAI Spring Symposium on Semantic Web Services, 2004.
  26. Bruno, M., G. Canfora, M. D. Penta, and R. Scogamiglio, "An Approach to support Web Service Classification and Annotation", in Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service(EEE'05), 2005.
  27. Kokash, N., W.-J. Heuvel, and V. D'Andrea, "Leveraging and Web Services Discovery with Customizable Hybrid Matching", in Technical Report DIT-06-042, University of Trento, 2006.
  28. Wang, Y. and E. Stroulia, "Flexible Interface Matching for Web-Service Discovery", in Proceedings of the Fourth International Conference on Service Oriented Computing (WISE'03), Rome, Italy : IEEE Computer Society Press, 2003.
  29. Wang, Y. and E. Stroulia, "Semantic Structure Matching for Accessing Web-Service Similarity", in Proceedings of the First International Conference on Service Oriented Computing, Trento, Italy, 2003.
  30. Stroulia, E. and Y. Wang, "Structural and Semantic Matching for Assessing Web-service Similarity", International Journal of Cooperative Information Systems, Vol.14, No.4(2005) 407-436. https://doi.org/10.1142/S0218843005001213
  31. WordNet. http://wordnet.princeton.edu/.
  32. Salton, G., A. Wong, and C. S. Yang, "A Vector Space Model for Automatic Indexing", Communications of the ACM, Vol.18, No.11(1975), 613-620. https://doi.org/10.1145/361219.361220
  33. Platzer, C. and S. Dustdar, "A Vector Space Search Engine for Web Services", in Proceedings of the Third European Conference on Web Services(ECOWS'05), 2005.
  34. Fan, J. and S. Kambhampati, "A Snapshot of Public Web Services", SIGMOD Record, Vol.34, No.1(2005), 24-32. https://doi.org/10.1145/1058150.1058156
  35. Hendler, J., R. P. Diaz, and C. Braun, "Computing Similarity in a Reuse Library System: An AI-Based Approach", ACM Transactions on Software Engineering and Methodology, Vol.1, No.3(1992), 205-228. https://doi.org/10.1145/131736.131739
  36. Kohonen, T., Self Organizing Maps, Third ed. Berlin : Springer, 2001.
  37. Everitt, B. S., S. Landau, and M. Leese, Cluster Analysis, Arnold, A member of the Hodder Headline Group, 2001.
  38. Hartigan, J. A., Clustering Algorithms, New York: Wiley, 1975.
  39. Jain, A. K., M. N. Murty, and P. J. Flynn, "Data clustering: a review", ACM Computing Surveys, Vol.31, No.3(1999), 264-323. https://doi.org/10.1145/331499.331504
  40. Milligan, G. W. and M. C. Cooper, "An examination of the effect of six types of error perturbation on fifteen clustering algorithms", Psychometrika, Vol.45, No.3(1980), 159-179.
  41. Deboeck, G. and T. Kohonen, Visual Explorations in Finance with Self-Organizing Maps, Berlin, New York : Springer, 1998.
  42. Gower, J. C., "A comparison of some methods of cluster analysis", Biometrics, Vol.23, No.4(1967), 623-638. https://doi.org/10.2307/2528417
  43. Zhao, Y. and G. Karypis, "Criterion functions for document clustering: Experiments and Analysis", Machine Learning, Vol.33, pp. 322-331, 2004.
  44. Mangiameli, P., S. K. Chen, and D. West, "A comparison of SOM neural network and hierarchical clustering methods", European Journal of Operational Research, Vol.93, No.2(1996), 402-417. https://doi.org/10.1016/0377-2217(96)00038-0
  45. Balakrishnan, P. V., M. C. Cooper, V. S. Jacob, and P. A. Lewis, "A study of the classification of neural networks using un-supervised learning : A comparison with K-means clustering", Psychometrika, Vol.59, No.4(1994), 509-525. https://doi.org/10.1007/BF02294390
  46. Eisen, M. B., S. Landau, and M. Leese, "Cluster analysis and display of genome-wide expression patterns", in Proceedings of the National Academy of Science of the United States of America, Vol.95, No.25(1998), 14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  47. Honkela, T., S. Kaski, K. Lagus, and T. Kohonen, "WEBSOM-self-organizing maps of document collections", in Proceedings of WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland, 1997.
  48. Afifi, A. A. and V. Clark, Computer-Aided Multivariate Analysis, 3rd ed. Chapman and Hall, 1996.