DOI QR코드

DOI QR Code

Effects of Amino Acids on the Activities of Alcohol Metabolizing Enzyme Alcohol Dehydrogenase (ADH) and Acetaldehyde Dehydrogenase (ALDH)

알코올 대사 효소 alcohol dehydrogenase (ADH) 및 acetaldehyde dehydrogenase (ALDH) 활성에 미치는 아미노산의 영향

  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Jung, Hae-Jung (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Jeong, Jae-Jun (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Yang, Hyun-Ju (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Kim, Yong-Taek (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Lee, Yong-Soo (Technical Research Institute, Daesun Distilling Co., Ltd.)
  • 차재영 (대선주조(주) 기술연구소) ;
  • 정해정 (대선주조(주) 기술연구소) ;
  • 정재준 (대선주조(주) 기술연구소) ;
  • 양현주 (대선주조(주) 기술연구소) ;
  • 김용택 (대선주조(주) 기술연구소) ;
  • 이용수 (대선주조(주) 기술연구소)
  • Published : 2009.09.30

Abstract

The present study examined the comparative effects of various amino acids on the alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities of yeast Saccharomyces cereviciae and rat liver homogenate in vitro. Methionine showed the highest activity in yeast ADH among the amino acids used in this study, but this was not higher than that of the hangover product, Condition-Power (CP) used as positive control. Methionine was also found to be the best amino acid in terms of the ALDH activity in rat liver homogenate among the treatment amino acids, which was comparatively higher than that of positive control CP. It was chosen for further experiments and yeast ADH activity increased in parallel with increased methionine concentration, but not rat liver ALDH activity, and it was comparatively higher than those of the positive control. Arginine showed the highest values in yeast ALDH and rat liver ADH activities among amino acids, and it was chosen for further experiments. Yeast ALDH activity increased in parallel with increased arginine concentration, which was higher than that of positive control CP, and rat liver ADH activity was also comparatively higher in all treatment concentrations of arginine than that of positive control CP. The native electrophoresis of ADH and ALDH from cell-free extracts of yeast Saccharomyces cerevisiae cultured in the growth medium containing various arginine concentrations by $0{\sim}0.1%$ showed two active bands upon zymogram staining analysis, and the straining intensity of ADH and ALDH active bands in arginine treatment yeast was stronger than that of non-yeast or low treatment yeast. These results indicate that alcohol metabolizing enzyme activities can be enhanced by arginine and methionine, suggesting that arginine and methionine have potent ethanol-metabolizing activities.

본 연구에서는 숙취해소에 좋은 것으로 알려진 식품 소재의 주요 아미노산을 포함하여 효소 활성에 영향을 미치는 것으로 알려진 아미노산을 선택하였고, 효소 활성도가 상대적으로 높은 yeast와 rat liver 유래의 ADH 및 ALDH 효소를 대상으로 알코올 대사에 관련된 효소 활성의 촉진 효과에 대하여 검토하였다. Rat liver 유래의 ADH 활성은 처리한 아미노산 중에서 arginine에서 가장 높았다. Arginine의 첨가 농도를 달리하여 효소 활성을 측정한 결과 $10{\sim}50\;mg$/ml 농도에서 $118{\sim}120.6%$로 양성대조구의 90.6% 보다 약간 높은 것으로 나타났다. 또한, yeast 유래의 ADH 활성은 methionine에서 가장 높은 활성을 보였고, methionine의 처리 농도를 달리한 경우에서는 첨가 농도 의존적으로 높은 활성을 보였다. Rat liver 유래의 ALDH 활성은 methionine이 가장 높은 활성을 보였다. Methionine의 첨가 농도별 측정에서는 10 mg/ml에서 30 및 50 mg/ml 첨가 농도에서 보다 높은 활성을 보였으며, 이들 모든 처리 농도에서 양성대조구 보다 상당히 높은 활성을 보였다. 한편 yeast 유래의 ALDH 활성은 각 아미노산별 큰 차이는 없었으나, arginine에서 높은 활성을 보였다. Arginine의 첨가 농도별 측정에서는 처리 농도 의존적으로 활성이 약간씩 증가하는 경향을 보였으며, 양성대조구 보다 높은 활성을 나타내었다. 효모 유래 ALDH 및 rat liver 유래 ADH 효소 활성을 촉진시키는 작용을 가진 arginine을 효모 배양에 첨가시킬 경우 세포 내 ALDH 및 ADH 활성 염색 정도가 증가함으로써 arginine은 ALDH 및 ADH 활성을 촉진시키는 효능이 in vivo 실험계에서도 확인되었다. 이상의 실험 결과에서 아미노산 중에서는 arginie과 methionine이 ADH 및 ALDH 활성을 촉진시키는 작용에 의해 알코올 분해뿐만 아니라 acetaldehyde의 분해도 촉진시킬 가능성이 높아 숙취해소 효과는 물론 간 보호 효과도 동시에 있을 것으로 시사 되어 진다. 따라서 arginine과 methionine과 같은 아미노산을 주류 제품에 첨가하게 될 경우 숙취해소 경감과 간 보호 효능을 어느 정도 나타낼 수 있을 가능성이 제기되었다.

Keywords

References

  1. Bergmeyer, H U. 1974. Methods of Enzymatic Analysis. Academic Press, New York, pp. 28
  2. Cha, J. Y., J. S. Heo, and Y. S. Cho. 2008. Effect of zinc-enriched yeast FF-I0 strain on the alcoholic hepatotoxicity in alcohol feeding rats. Food Sci. Biotechnol. 17, 1207-1213
  3. Crabtree, B. and E. A. Newsholme. 1972. The activities of phosphorylase, hexokinase, phosphofractokinase, lactate dehydrogenase and glycerol-3-phosphate dehydrogenase in muscles from vertebrates and inberterates. Biochem. J. 126, 49-55
  4. Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42 https://doi.org/10.1002/bimj.19590010102
  5. Gennady, P. M. 2002. Handbook of Detection of Enzymes on Electrophoretic Gels. pp. 27-33, 2nd ed. CRC Press, Inc., Boca Ration, FL, USA
  6. Han, S. K and H S. Lim. 2004. The effect of hangover drink using propolis on ethanol oxidation. Korean J. Food Sci. Ani. Resour 24, 198-201
  7. Helander, A. and O. Tottmar. 1988. Effect of acute ethanol administration on human alcohol aldehyde dehydrogenase activity. Alcohol Clin. Exp. Res. 12, 643-646 https://doi.org/10.1111/j.1530-0277.1988.tb00257.x
  8. Husenmoen, L. L., M. Fenger, N. Friedrich, J. S. Tolstrup, S. Beenfeldt Fredriksen, and A. Linneberg. 2008. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin. Exp. Res. 32, 1984-1991
  9. Hwang, J. Y., J. W. Ham, and S. H. Nam. 2004. Effect of Maesil (Prunus mume) juice on the alcohol metabolizing enzyme activities. Korean J. Food Sci. Technol. 36, 329-332
  10. limuro, Y., B. U. Bradford, D. T. Forman, and R. G. Thurman. 1996. Glycine prevents alcohol-induced liver injury by decreasing alcohol in the rat stomach . Gastroenterology 110, 1536-1542 https://doi.org/10.1053/gast.1996.v110.pm8613061
  11. Kang, B. K, S. T. Jung and S. J. Kim. 2002. Effects of vegetable extracts by solvent separation on alcohol dehydrogenase activity from Saccharomyces cerevisiae. Korean J. Food Sci. Technol. 34, 244-248
  12. Kim, D. H., D. S. Kim, and J. W. Choi. 1994. Effect of puffer fish extract on the hepatic alcohol metabolizing enzyme system in alcohol treated rat. J. Korean Soc. Food Nutr. 23, 181-186
  13. Kim, M. H, U. T. Chung, J. H Lee, Y. S. Park, M. K Shin, H S. Kim, D. H Kim, and H Y. Lee. 2000. Hepatic detoxification activity and reduction of serum alcohol concentration of Hovenia dulcis Thunb from Korea and China. Korean Medicinal Crop Sci. 8, 225-233
  14. Koivula, T. and M. Koivusalo. 1975. Different form of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim. Biophys. Acta 397, 9-23 https://doi.org/10.1016/0005-2744(75)90174-6
  15. Lee, I. S., S. O. Lee, and H. S. Kim. 2002. Preparation and quality characteristics of yogurt added with Saururus chinensis (Lour.) Bail. J. Korean Soc. Food Sci. Nutr. 31, 411-416 https://doi.org/10.3746/jkfn.2002.31.3.411
  16. Lee, J. H., N. K Kim, D. Y. Lee, and C. H Lee. 1999. Protective effect of selected amino acids and food extracts on ethanol toxicity determent in rat liver. Korean J. Food Sci. Technol. 31, 802-808
  17. Lieber, C. S. 1985. Alcohol and the liver; metabolism of ethanol, metabolism effects and pathogenesis of injury. Acta Med. Scand. Suppl. 703, 11-55
  18. Lowry, O. H, N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  19. Magonet, E., P. Hayen, D. Delfoge, E. Delaive, and J. Remarcle. 1992. Importance of the structural zinc atom for activity of yeast alcohol dehydrogenase. J. Biochem. 287, 361-365
  20. Park, E. M., E. J. Ye, S. J. Kim, H I. Choi, and M. J. Bae. 2006. Eliminatory effect of health drink containing Hovenia Dulcis Thunb extract on ethanol induced hangover in rats. Korean J. Food Culture 21, 71-75
  21. Park, S. C. 1993. Ethanol oxidation is accelerated by augmentation of malate-aspartate shuttle with aspartate. Korean J. Biochem. 25, 137-143
  22. Peters, T. J. 1982. Ethanol metabolism. Bri. Med. Bull. 38, 17-20
  23. Sachan, D. S. and Y. S. Chao 1994. Acetylcarnitine inhibits alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 203, 1496-1501 https://doi.org/10.1006/bbrc.1994.2354
  24. Schisler, N. J. and S. M. Singh. 1989. Effect of ethanol in vivo on enzymes which detoxify oxygen free radicals. Free Radic. Biol. Med. 7, 117-123 https://doi.org/10.1016/0891-5849(89)90002-6
  25. Seo, K Hand S. H. Kim. 2001. A study on the analysis of oriental functional beverage and on the blood alcohol concentration of rat after drinking liquors. J. Korean Food Nutr. 14, 222-227
  26. Swain, T., W. E. Hillis, and M. Oritega. 1959. Phenolic constituents of Ptunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 83-88
  27. Yea, S. S., S. K. Lim, H. Y. SohnI I. N. Jin, I. K. Rhee, Y. H. Kim, J. H. Seu, and W, Park. 1997. Alcohol dehydrogenae of thermotolerant alcohol-producing yeast. Kor. J. Appl. Microbiol. Biotechnol. 25, 386-390
  28. Yin, M., K. Ikejima, G. E. Arteet V. Seabra, B. U. Bradford, H. Kono, I. Rusyn, and R. G. Thurman. 1998. Glycine accelerates recovery from alcohol-induced liver injury. J. Pharacol. Exp. Ther. 286, 1014-1019

Cited by

  1. Antioxidant and Alcohol Degradation Activities of Extracts from Acer tegmentosum Maxim. vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.378
  2. Effect of arginine on the alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes of alcohol metabolism inSaccharomyces cerevisiae 2011, https://doi.org/10.3109/08923973.2011.619196
  3. The Comparative Analysis of Antioxidant and Biological Activity for the Dendropanax morbifera LEV. Leaves Extracted by Different Ethanol Concentrations vol.136, pp.9, 2016, https://doi.org/10.1248/yakushi.16-00018
  4. Alcohol Dehydrogenase Activity and Sensory Evaluation of Hutgae (Hovenia dulcis Thunb) Fruit Soy Sauce vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.747
  5. Changes in Alcohol Dehydrogenase (ADH) and Acetaldehyde Dehydrogenase (ALDH) Activity during the Processing of Salt-Dried Rockfish Sebastes schlegeli vol.45, pp.6, 2012, https://doi.org/10.5657/KFAS.2012.0594
  6. Separation and Characteristics of ADH and ALDH Activators in Fermented Lycii fructus Extract vol.31, pp.2, 2016, https://doi.org/10.7841/ksbbj.2016.31.2.134
  7. Biological Activity and Chemical Characteristics of Fermented Silkworm Powder by Mold vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.237
  8. Effect of Fruit-Vegetable Juices Containing Angelica keiskei on Alcohol Metabolizing Enzyme Activities in vitro vol.31, pp.1, 2016, https://doi.org/10.7841/ksbbj.2016.31.1.8
  9. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells vol.34, pp.2, 2012, https://doi.org/10.3109/08923973.2011.600764
  10. Antioxidant Activity and Sensory Evaluation in Soy Sauce with Fruit, Stem, or Twig of Hovenia dulcis Thunb vol.26, pp.2, 2013, https://doi.org/10.9799/ksfan.2013.26.2.258
  11. Comparison of the organic acids, fusel oil contents and antioxidant activities of Yakju with the additions of various rice cultivars vol.20, pp.3, 2013, https://doi.org/10.11002/kjfp.2013.20.3.365
  12. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract vol.25, pp.2, 2017, https://doi.org/10.1016/j.jfda.2016.08.006
  13. Physicochemical properties of Saeilmi (Oryza sativa Linne) germinated with different steeping and germination time vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.311