DOI QR코드

DOI QR Code

대장암 세포주에서 genistein과 daidzein의 병합처리에 의한 상승적인 세포독성 효과

Synergistic Cytotoxic Effects by Combination Treatment of Genistein and Daidzein in Human Colorectal Cancer Cell

  • 손성민 (안동대학교 자연과학대학 생명과학과) ;
  • 임승현 (안동대학교 자연과학대학 생명과학과) ;
  • 김효림 (안동대학교 자연과학대학 생명과학과) ;
  • 정민정 (안동대학교 자연과학대학 생명과학과) ;
  • 김태완 (안동대학교 자연과학대학 식품생명공학과) ;
  • 이종화 (안동대학교 자연과학대학 식품생명공학과) ;
  • 김종식 (안동대학교 자연과학대학 생명과학과)
  • Son, Seong-Min (Dept. of Biological Sciences, Andong National University) ;
  • Lim, Seung-Hyun (Dept. of Biological Sciences, Andong National University) ;
  • Kim, Hyo-Rim (Dept. of Biological Sciences, Andong National University) ;
  • Kim, Min-Jeong (Dept. of Biological Sciences, Andong National University) ;
  • Kim, Tae-Wan (Dept. of Food Science and Biotechnology, Andong National University) ;
  • Lee, Jong-Hwa (Dept. of Food Science and Biotechnology, Andong National University) ;
  • Kim, Jong-Sik (Dept. of Biological Sciences, Andong National University)
  • 발행 : 2009.09.30

초록

콩의 대표적인 이소플라본인 genistein과 daidzein에 의해 암세포 생존율에 미치는 영향을 확인하기 위하여, HCT116 세포주에 genistein과 daidzein을 농도 의존적으로 처리하였다. Genistein은 처리한 농도 의존적으로 암세포 생존율을 감소시켰으며, 이에 반해 daidzein은 세포생존율에 큰 변화를 보여주지는 못하였다. 이전의 마이크로어레이 실험 결과에 의하면, $50{\mu}M$의 genistein에 의해 2배 이상 증가되는 유전자 71개, 2배 이상 감소되는 유전자 64개가 검색되었다. 이중 3개의 유전자(DKK-1, ATF3 그리 고 NAG-1)를 선택하여, 마이크로어레이 실험 결과를 검증하기 위하여 RT-PCR을 수행하였다. RT-PCR 결과 마이크로어레이 결과와 모두 일치함을 증명하였다. 한편, genistein과 daidzein에 의한 병합처리에 의해 암세포생존에 미치는 영향을 확인하였다. 그 결과 병합처리에 의한 상승적인 세포독성 효과를 확인하였다. RT-PCR과 real-time PCR의 결과 genistein과 daidzein의 병합처리에 의해 항암유전자인 NAG-1 유전자가 상승적으로 발현이 증가됨을 확인하였다. 이러한 결과는 이소플라본뿐만 아니라 대두제품에 의한 암 화학예방법의 기전을 이해하는 도움을 줄 것으로 생각된다.

To investigate whether isoflavone genistein and daidzein could affect cancer cell viability, human colorectal HCT116 cells were incubated with genistein or daidzein in a dose-dependent manner. Genistein decreased cancer cell viability in a dose-dependent manner, whereas daidzein did not show dramatic cytotoxic effects. We also found that 71 genes were up-regulated more than 2-fold, whereas 64 genes were down-regulated more than 2-fold with 24 hr of $50{\mu}M$ genistein treatment by our previous microarray data. Among the up-regulated genes, we selected 3 genes (DKK1, ATF3 and NAG-1) and performed RT-PCR to confirm microarray data. The results of RT-PCR were highly correlated with those of the microarray experiment. In addition, we investigated whether a combination treatment of genistein and daidzein could affect cancer cell viability. Surprisingly, the combination treatment did show synergistic cytotoxic effects detected by MTS assay. The results of RT-PCR and real-time PCR indicate that a combination of genistein and daidzein can synergistically induce NAG-1 expression in HCT116 cells. This result implies that NAG-1 induction is highly associated with synergistic cytotoxic effects induced by a combination treatment of genistein and daidzein. Overall, these results may provide a clue in explaining the anti-cancer activity of soy bean in human colorectal cancer.

키워드

참고문헌

  1. Baek, S. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-I) by increasing the expression of p53. Carcinogenesis 23, 425-434 https://doi.org/10.1093/carcin/23.3.425
  2. Baek, S. J., J. S. Kim, S. M. Moore, S. H. Lee, J. Martinez, and T. E. Eling. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-I, an antitumorigenic protein. Mol. Pharmacol. 67, 356-364 https://doi.org/10.1124/mol.104.005108
  3. Banerjee, S., Y. Li, Z. Wang, and F. H. Sarkar. 2008. Multi-targeted therapy of cancer by genistein. Cancer Lett. 269, 226-242 https://doi.org/10.1016/j.canlet.2008.03.052
  4. Constantinou, A I., B. E. White, D. Tonetti, Y. Yang, W. Liang, W. Li, and R. B. van Breemen. 2005. The soy isoflavone daidzein improves the capacity of tamoxifen to prevent mammary tumours. Eur. J. Cancer 41, 647-654 https://doi.org/10.1016/j.ejca.2004.12.005
  5. Hsieh, T. C. and J. M. Wu. 2008. Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells. Int. J. Oncol. 33, 851-859
  6. Kelloff, G. J., C. W. Boone, J. A Crowell, V. E. Steele, R. Lubet, and C. C. Sigman. 1994. Chemopreventive drug development: perspectives and progress. Cancer Epidemiol. Biomarkers Prevo 3, 85-98
  7. Lamartiniere, C. A, J. Wang, M. Smith-Johnson, and I. E. Eltoum. 2002. Daidzein: bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol. Sci. 65, 228-238 https://doi.org/10.1093/toxsci/65.2.228
  8. Liu, R. H. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 134(12 Suppl), 3479S-3485S
  9. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the TMCT Method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  10. Rayalam, S., M. A Della-Fera, J. Y. Yang, H. J. Park, S. Ambati, and C. A Baile. 2007. Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J. Nutr. 137, 2668-2673
  11. Reiter, E., A Azzi, and J. M. Zingg. 2007. Enhanced anti-proliferative effects of combinatorial treatment of delta-tocopherol and resveratrol in human HMC-1 cells. Biofactors 30, 67-77 https://doi.org/10.1002/biof.5520300201
  12. Sarkar, F. H. and Y. Li. 2002. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev. 21, 265-280 https://doi.org/10.1023/A:1021210910821
  13. Schlachterman, A, F. Valle, K. M. Wall, N. G. Azios, L. Castillo, L. Morell, A V. Washington, L. A Cubano, and S. F. Dharmawardhane. 2008. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl. Oncol. 1, 19-27 https://doi.org/10.1593/tlo.07100
  14. Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780 https://doi.org/10.1038/nrc1189
  15. Thomasset, S. C., D. P. Berry, G. Garcea, T. Marczylo, W. P. Steward, and A J. Gescher. 2007. Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer 120, 451-458 https://doi.org/10.1002/ijc.22419
  16. Wilson, L. C., S. J. Baek, A Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-I) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753 https://doi.org/10.1002/ijc.11173
  17. Ye, F., J. Wu, T. Dunn, J. Yi, X. Tong, and D. Zhang. 2004. Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett. 211, 39-46 https://doi.org/10.1016/j.canlet.2004.03.043

피인용 문헌

  1. Anticancer Activity of Olive Oil Hydroxytyrosyl Acetate in Human Adenocarcinoma Caco-2 Cells vol.61, pp.13, 2013, https://doi.org/10.1021/jf305158q