The Function of Reactive Oxyegn Species in Bone Loss

골손실을 조절하는 활성산소종의 역할 규명

  • Yang, Mi-Hye (College of Natural Sciences, Kyungpook National University) ;
  • Park, Hyo-Jung (College of Pharmacy, Sookmyung Women's University) ;
  • Lee, Dong-Seok (College of Natural Sciences, Kyungpook National University) ;
  • Yim, Mi-Jung (College of Pharmacy, Sookmyung Women's University)
  • 양미혜 (경북대학교 자연과학대학 생명공학부) ;
  • 박효정 (숙명여자대학교 약학대학) ;
  • 이동석 (경북대학교 자연과학대학 생명공학부) ;
  • 임미정 (숙명여자대학교 약학대학)
  • Published : 2009.08.31

Abstract

We explored the role of reactive oxygen species (ROS) in LPS-induced bone loss. LPS was shown to increase the concentration of ROS in osteoclast precursors. The antioxidant decreased osteoclast formation by LPS. Furthermore, the antioxidant decreased NFATc1 expression by LPS, suggesting that ROS mediates NFATc1 expression in the regulation of LPS-induced osteoclast formation. Finally, the antioxidant decreased LPS-induced RANKL mRNA expression in osteoblasts. Taken together, these data indicate that LPS mediates ROS to induce bone loss.

Keywords

References

  1. Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J. M., Martin, T. J. and Suda, T. : Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600 (1988) https://doi.org/10.1210/endo-123-5-2600
  2. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. : Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345 (1999) https://doi.org/10.1210/er.20.3.345
  3. Wong, B. R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett, F. S. 3rd, Frankel, W. N., Lee, S. Y. and Choi, Y. : TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun Nterminal kinase in T cells. J. Biol. Chem. 272, 25190 (1997) https://doi.org/10.1074/jbc.272.40.25190
  4. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T. : Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesisinhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597 (1998) https://doi.org/10.1073/pnas.95.7.3597
  5. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J. and Boyle, W. J. : Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165 (1998) https://doi.org/10.1016/S0092-8674(00)81569-X
  6. Nair, S. P., Meghji, S., Wilson, M., Reddi, K., White, P. and Henderson, B. : Bacterially induced bone destruction: mechanisms and misconceptions. Infect. Immun. 64, 2371 (1996)
  7. Erard, F. and Ryffel, B. : Toll like receptor - potential drug targets in infectious disease. Infect. Disord. Drug. Targets. 8, 221 (2008) https://doi.org/10.2174/187152608786734179
  8. Palsson-McDermott, E. M. and O'Neill, L. A. : Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153 (2004) https://doi.org/10.1111/j.1365-2567.2004.01976.x
  9. Itoh, K., Udagawa, N., Kobayashi, K., Suda, K., Li, X., Takami, M., Okahashi, N., Nishihara, T. and Takahashi, N. : Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J. Immunol. 170, 3688 (2003) https://doi.org/10.4049/jimmunol.170.7.3688
  10. Kikuchi, T., Matsuguchi, T., Tsuboi, N., Mitani, A., Tanaka, S., Matsuoka, M., Yamamoto, G., Hishikawa, T., Noguchi, T. and Yoshikai, Y. : Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol. 166, 3574 (2001) https://doi.org/10.4049/jimmunol.166.5.3574
  11. Coon, D., Gulati, A., Cowan, C. and He, J. : The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. J. Endod. 33, 432 (2007) https://doi.org/10.1016/j.joen.2006.12.001
  12. Sato, N., Takahashi, N., Suda, K., Nakamura, M., Yamaki, M., Ninomiya, T., Kobayashi, Y., Takada, H., Shibata, K., Yamamoto, M., Takeda, K., Akira, S., Noguchi, T. and Udagawa, N. : MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL- 1alpha. J. Exp Med. 200, 601 (2004) https://doi.org/10.1084/jem.20040689
  13. Suda, K., Woo, J. T., Takami, M., Sexton, P. M. and Nagai, K. : Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. J. Cell. Physiol. 190, 101 (2002) https://doi.org/10.1002/jcp.10041
  14. Takayanagi, H. : The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116, 227 (2007) https://doi.org/10.1196/annals.1402.071
  15. Kaneko, H., Mehrotra, M., Alander, C., Lerner, U., Pilbeam, C. and Raisz, L. : Effects of prostaglandin E2 and lipopolysaccharide on osteoclastogenesis in RAW 264.7 cells. Prostaglandins Leukot. Essent. Fatty Acids. 77, 181 (2007) https://doi.org/10.1016/j.plefa.2007.09.002
  16. Zou, W. and Bar-Shavit, Z. : Dual modulation of osteoclast differentiation by lipopolysaccharide. J. Bone Miner. Res. 17, 1211 (2002) https://doi.org/10.1359/jbmr.2002.17.7.1211