References
- Ohgaki, H., Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64: 479-489, 2005 https://doi.org/10.1093/jnen/64.6.479
- DeAngelis, L.M. Brain tumors. N Engl J Med 344: 114-123, 2001 https://doi.org/10.1056/NEJM200101113440207
- Sanai, N., Alvarez-Buylla, A., Berger, M.S. Neural stem cells and the origin of gliomas. N Engl J Med 353: 811-822, 2005 https://doi.org/10.1056/NEJMra043666
- Fresco, P., Borges, F., Diniz, C., Marques, M.P. New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26: 747-766, 2006 https://doi.org/10.1002/med.20060
- Kanadaswami, C., Lee, L.T., Lee, P.P., Hwang, J.J., Ke, F.C., Huang, Y.T., Lee, M.T. The antitumor activities of flavonoids. In Vivo 19: 895-909, 2005
- Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L. Flavonoids: promising anticancer agents. Med Res Rev 23: 519-534, 2003 https://doi.org/10.1002/med.10033
- Braganhol, E., Zamin, L.L., Canedo, A.D., Horn, F., Tamajusuku, A.S., Wink, M.R., Salbego, C., Battastini, A.M. Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 17: 663-671, 2006 https://doi.org/10.1097/01.cad.0000215063.23932.02
- Sharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K., Sen, E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6: 2544-2553, 2007 https://doi.org/10.1158/1535-7163.MCT-06-0788
- Shen, S.C., Lin, C.W., Lee, H.M., Chien, L.L., Chen, Y.C. Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience 140: 477-489, 2006 https://doi.org/10.1016/j.neuroscience.2006.02.028
- Kaur, M., Agarwal, R. Silymarin and epithelial cancer chemoprevention: how close we are to bedside? Toxicol Appl Pharmacol 224: 350-359, 2007 https://doi.org/10.1016/j.taap.2006.11.011
- Ramasamy, K., Agarwal, R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 269: 352-362, 2008 https://doi.org/10.1016/j.canlet.2008.03.053
- Singh, R.P., Gu, M., Agarwal, R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res 68: 2043-2050, 2008 https://doi.org/10.1158/0008-5472.CAN-07-6247
- Singh, R.P., Mallikarjuna, G.U., Sharma, G., Dhanalakshmi, S., Tyagi, A.K., Chan, D.C., Agarwal, C., Agarwal, R. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance. Clin Cancer Res 10: 8641-8647, 2004 https://doi.org/10.1158/1078-0432.CCR-04-1435
- Son, Y.G., Kim, E.H., Kim, J.Y., Kim, S.U., Kwon, T.K., Yoon, A.R., Yun, C.O., Choi, K.S. Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res 67: 8274-8284, 2007 https://doi.org/10.1158/0008-5472.CAN-07-0407
- Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W., Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273: 7770-7775, 1998 https://doi.org/10.1074/jbc.273.13.7770
- Nowak, G. PKC-a and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J. Biol. Chem. 277: 43377-43388, 2002 https://doi.org/10.1074/jbc.M206373200
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18: 427-442, 2007 https://doi.org/10.1016/j.jnutbio.2006.11.004
- Watson, W.H., Cai, J., Jones, D.P. Diet and apoptosis. Annu Rev Nutr 20: 485-505, 2000 https://doi.org/10.1146/annurev.nutr.20.1.485
- Chen, Y.C., Shen, S.C., Chow, J.M., Ko, C.H., Tseng, S.W. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 25: 661-670, 2004
- Kim, E.J., Choi, C.H., Park, J.Y., Kang, S.K., Kim, Y.K. Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res 33: 971-979, 2008 https://doi.org/10.1007/s11064-007-9416-8
- Wang, I.K., Lin-Shiau, S.Y., Lin, J.K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35: 1517-1525, 1999 https://doi.org/10.1016/S0959-8049(99)00168-9
- Desagher, S., Martinou, J.C. Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369-377, 2000 https://doi.org/10.1016/S0962-8924(00)01803-1
- Chandra, D., Liu, J.W., Tang, D.G. Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem 52: 50842-50854, 2002
- Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281: 1309-1312, 1998 https://doi.org/10.1126/science.281.5381.1309
- Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413, 1997 https://doi.org/10.1016/S0092-8674(00)80501-2