Effect of Rhei Rhizoma on Brain Edema Induced by MCAO in Rats

대황(大黃)이 뇌허혈 손상에 의한 뇌부종에 미치는 영향

  • Kang, Kyung-Hwa (Department of Oriental Medicine, Dong-Eui University Research Institute of Oriental Medicine, Dong-Eui University) ;
  • Sohn, Nak-Won (Graduate School of East-West Medicine, Kyung Hee University) ;
  • Kim, Bum-Hoi (Department of Oriental Medicine, Dong-Eui University Research Institute of Oriental Medicine, Dong-Eui University)
  • 강경화 (동의대학교 한의과대학 한의학과 & 동의대학교 한의학연구소) ;
  • 손낙원 (경희대학교 동서의학대학원) ;
  • 김범회 (동의대학교 한의과대학 한의학과 & 동의대학교 한의학연구소)
  • Published : 2009.08.25

Abstract

Brain edema is a major importance in the pathophysiology of CNS injuries including stroke. Ischemic brain edema results from both cytotoxic edema, which is severe in astrocytes at early stage, and vasogenic edema caused by excessive blood-brain barrier (BBB) permeability. The present study was performed to determine the effect of Rhei Rhizoma on brain edema induced by middle cerebral artery occlusion (MCAO) in the rats. The neurological symptom, total infarct volume and edema index caused by MCAO were measured. The changes of Matrix Metalloproteinase-9 (MMP-9) and inducible nitric oxide synthase (iNOS) immunoreactivities were also observed. We found that Rhei Rhizoma extract improved the neurological symptom and attenuated the total infarct volume and brain edema caused by ischemic insult. Rhei Rhizoma extract also attenuated the expression of MMP-9 and iNOS. This results suggest that Rhei Rhizoma has a protective effect on the brain edema caused by ischemic insult.

Keywords

References

  1. 전국한의과대학 본초학 교수. 본초학. 서울, 영림사, pp 242-243, 1995
  2. 김도완, 박창국. 전탕시간에 따른 생대황 및 주대황이 어혈병태모형에 미치는 영향. 대한한방내과학회지 19(1):114-133, 1998
  3. Park, E.K., Choo, M.K., Yoon, H.K., Kim, D.H. Antithrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria. Arch Pharm Res., 25(4):528-533, 2002 https://doi.org/10.1007/BF02976613
  4. 이영종. 대황 전탕액 분획이 고지사료 투여 흰쥐의 혈중 지질 함량에 미치는 영향. 대한본초학회지 15(2):87-93, 2000
  5. 손영종, 김윤상, 이영종. 대황이 고지혈증 흰쥐의 혈중지질 및 효소활성에 미치는 영향. 대한본초학회지 14(1):61-68, 1999
  6. 안덕균, 원도희, 김종호. 4-vessel occlusion으로 유발한 흰쥐 전뇌허혈의 신경세포 손상에 대한 대황의 방어효과. 대한본초학회지 14(1):111-120, 1999
  7. 김범회. Neuroprotective effect of Rhei Rhizoma on transient global ischemia in Gerbil. 경희대학교대학원, 2002
  8. 백진원, 김주원, 정승현, 신길조, 이원철. 대황이 뇌허혈 유발 노령 흰쥐의 해마 c-fos 및 c-jun 발현에 미치는 영향. 대한한방내과학회지 25(3):473-481, 2004
  9. 김영석. 임상중풍학. 서울, 서원당, pp 380-381. 1997
  10. Fishman, R.A. Brain edema. N Engl J Med., 293(14):706-711, 1975 https://doi.org/10.1056/NEJM197510022931407
  11. Nordborg, C., Sokrab, T.E., Johansson, B.B. Oedema-related tissue damage after temporary and permanent occlusion of the middle cerebral artery. Neuropathol Appl Neurobiol, 20: 56-65, 1994 https://doi.org/10.1111/j.1365-2990.1994.tb00957.x
  12. Yang, G.Y., Betz, A.L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke, 25(8):1658-1664, 1994 https://doi.org/10.1161/01.STR.25.8.1658
  13. Burggraf, D., Martens, H.K., Dichgans, M., Hamann, G.F. Matrix metalloproteinase (MMP) induction and inhibition at different doses of recombinant tissue plasminogen activator following experimental stroke. Thromb Haemost. 98(5):963-969, 2007
  14. Rosenberg, G.A., Estrada, E.Y., Dencoff, J.E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 29(10):2189-2195, 1998 https://doi.org/10.1161/01.STR.29.10.2189
  15. Dirnagl, U., Iadecola, C., Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 22(9):391-397, 1999 https://doi.org/10.1016/S0166-2236(99)01401-0
  16. Kondo, T., Reaume, A.G., Huang, T.T., Carlson, E., Murakami, K., Chen, S.F., Hoffman, E.K., Scott, R.W., Epstein, C.J., Chan, P.H. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci., 17(11):4180-4189, 1997 https://doi.org/10.1523/JNEUROSCI.17-11-04180.1997
  17. Knowles, R.G., Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298: 249-258, 1994 https://doi.org/10.1042/bj2980249
  18. Bolanos, J.P., Almeida, A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1411(2-3):415-436, 1999 https://doi.org/10.1016/S0005-2728(99)00030-4
  19. Iadecola, C., Zhang, F., Xu, S., Casey, R., Ross, M.E. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 15(3):378-384, 1995 https://doi.org/10.1038/jcbfm.1995.47
  20. Cash, D., Beech, J.S., Rayne, R.C., Bath, P.M., Meldrum, B.S., Williams, S.C. Neuroprotective effect of aminoguanidine on transient focal ischaemia in the rat brain. Brain Res. 905(1-2):91-103, 2001
  21. Zhu, D.Y,, Deng, Q., Yao, H.H., Wang, D.C., Deng, Y., Liu, G.Q. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci., 71(17):1985-1996, 2002 https://doi.org/10.1016/S0024-3205(02)01970-7
  22. Longa, E.Z., Weinstein, P.R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20(1):84-91, 1989 https://doi.org/10.1161/01.STR.20.1.84
  23. Bederson, J.B., Pitts, L.H., Tsuji, M., Nishimura, M.C., Davis, R.L., Bartkowski, H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 17(3):472-476, 1986 https://doi.org/10.1161/01.STR.17.3.472
  24. Siesjo, B.K., Bengtsson, F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab., 9(2):127-140, 1989 https://doi.org/10.1038/jcbfm.1989.20
  25. Brightman, M.W., Reese, T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 40(3):648-677, 1969 https://doi.org/10.1083/jcb.40.3.648
  26. Hawkins, B.T., Davis, T.P. The Blood-Brain Barrier/ Neurovascular Unit in Health and Disease. Pharmacol Rev. 57(2):173-185, 2005 https://doi.org/10.1124/pr.57.2.4
  27. Kuroiwa, T., Ting, P., Martinez, H., Klatzo, I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 68(2):122-129, 1985 https://doi.org/10.1007/BF00688633
  28. Nagase, H., Woessner, J.F. Matrix metalloproteinases. J Biol Chem. 274(31):21491-21494, 1999 https://doi.org/10.1074/jbc.274.31.21491
  29. Hamann, G.F., Okada, Y., Fitridge, R., del Zoppo, G.J. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke, 26(11):2120-2126, 1995 https://doi.org/10.1161/01.STR.26.11.2120
  30. Rosenberg, G.A., Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus, 22(5):E4, 2007
  31. Heo, J.H., Lucero, J., Abumiya, T., Koizol, J.A., Copeland, B.R., del Zoppo, G.J. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab., 19: 624-633, 1999 https://doi.org/10.1097/00004647-199906000-00005
  32. Asahi, M., Asahi, K., Jung, J., del Zoppo, G.J., Fini, E., Lo, E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 20: 1681-1689, 2000 https://doi.org/10.1097/00004647-200012000-00007