References
- 전국한의과대학 본초학 교수. 본초학. 서울, 영림사, pp 242-243, 1995
- 김도완, 박창국. 전탕시간에 따른 생대황 및 주대황이 어혈병태모형에 미치는 영향. 대한한방내과학회지 19(1):114-133, 1998
- Park, E.K., Choo, M.K., Yoon, H.K., Kim, D.H. Antithrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria. Arch Pharm Res., 25(4):528-533, 2002 https://doi.org/10.1007/BF02976613
- 이영종. 대황 전탕액 분획이 고지사료 투여 흰쥐의 혈중 지질 함량에 미치는 영향. 대한본초학회지 15(2):87-93, 2000
- 손영종, 김윤상, 이영종. 대황이 고지혈증 흰쥐의 혈중지질 및 효소활성에 미치는 영향. 대한본초학회지 14(1):61-68, 1999
- 안덕균, 원도희, 김종호. 4-vessel occlusion으로 유발한 흰쥐 전뇌허혈의 신경세포 손상에 대한 대황의 방어효과. 대한본초학회지 14(1):111-120, 1999
- 김범회. Neuroprotective effect of Rhei Rhizoma on transient global ischemia in Gerbil. 경희대학교대학원, 2002
- 백진원, 김주원, 정승현, 신길조, 이원철. 대황이 뇌허혈 유발 노령 흰쥐의 해마 c-fos 및 c-jun 발현에 미치는 영향. 대한한방내과학회지 25(3):473-481, 2004
- 김영석. 임상중풍학. 서울, 서원당, pp 380-381. 1997
- Fishman, R.A. Brain edema. N Engl J Med., 293(14):706-711, 1975 https://doi.org/10.1056/NEJM197510022931407
- Nordborg, C., Sokrab, T.E., Johansson, B.B. Oedema-related tissue damage after temporary and permanent occlusion of the middle cerebral artery. Neuropathol Appl Neurobiol, 20: 56-65, 1994 https://doi.org/10.1111/j.1365-2990.1994.tb00957.x
- Yang, G.Y., Betz, A.L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke, 25(8):1658-1664, 1994 https://doi.org/10.1161/01.STR.25.8.1658
- Burggraf, D., Martens, H.K., Dichgans, M., Hamann, G.F. Matrix metalloproteinase (MMP) induction and inhibition at different doses of recombinant tissue plasminogen activator following experimental stroke. Thromb Haemost. 98(5):963-969, 2007
- Rosenberg, G.A., Estrada, E.Y., Dencoff, J.E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 29(10):2189-2195, 1998 https://doi.org/10.1161/01.STR.29.10.2189
- Dirnagl, U., Iadecola, C., Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 22(9):391-397, 1999 https://doi.org/10.1016/S0166-2236(99)01401-0
- Kondo, T., Reaume, A.G., Huang, T.T., Carlson, E., Murakami, K., Chen, S.F., Hoffman, E.K., Scott, R.W., Epstein, C.J., Chan, P.H. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci., 17(11):4180-4189, 1997 https://doi.org/10.1523/JNEUROSCI.17-11-04180.1997
- Knowles, R.G., Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298: 249-258, 1994 https://doi.org/10.1042/bj2980249
- Bolanos, J.P., Almeida, A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1411(2-3):415-436, 1999 https://doi.org/10.1016/S0005-2728(99)00030-4
- Iadecola, C., Zhang, F., Xu, S., Casey, R., Ross, M.E. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 15(3):378-384, 1995 https://doi.org/10.1038/jcbfm.1995.47
- Cash, D., Beech, J.S., Rayne, R.C., Bath, P.M., Meldrum, B.S., Williams, S.C. Neuroprotective effect of aminoguanidine on transient focal ischaemia in the rat brain. Brain Res. 905(1-2):91-103, 2001
- Zhu, D.Y,, Deng, Q., Yao, H.H., Wang, D.C., Deng, Y., Liu, G.Q. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci., 71(17):1985-1996, 2002 https://doi.org/10.1016/S0024-3205(02)01970-7
- Longa, E.Z., Weinstein, P.R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20(1):84-91, 1989 https://doi.org/10.1161/01.STR.20.1.84
- Bederson, J.B., Pitts, L.H., Tsuji, M., Nishimura, M.C., Davis, R.L., Bartkowski, H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 17(3):472-476, 1986 https://doi.org/10.1161/01.STR.17.3.472
- Siesjo, B.K., Bengtsson, F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab., 9(2):127-140, 1989 https://doi.org/10.1038/jcbfm.1989.20
- Brightman, M.W., Reese, T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 40(3):648-677, 1969 https://doi.org/10.1083/jcb.40.3.648
- Hawkins, B.T., Davis, T.P. The Blood-Brain Barrier/ Neurovascular Unit in Health and Disease. Pharmacol Rev. 57(2):173-185, 2005 https://doi.org/10.1124/pr.57.2.4
- Kuroiwa, T., Ting, P., Martinez, H., Klatzo, I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 68(2):122-129, 1985 https://doi.org/10.1007/BF00688633
- Nagase, H., Woessner, J.F. Matrix metalloproteinases. J Biol Chem. 274(31):21491-21494, 1999 https://doi.org/10.1074/jbc.274.31.21491
- Hamann, G.F., Okada, Y., Fitridge, R., del Zoppo, G.J. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke, 26(11):2120-2126, 1995 https://doi.org/10.1161/01.STR.26.11.2120
- Rosenberg, G.A., Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus, 22(5):E4, 2007
- Heo, J.H., Lucero, J., Abumiya, T., Koizol, J.A., Copeland, B.R., del Zoppo, G.J. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab., 19: 624-633, 1999 https://doi.org/10.1097/00004647-199906000-00005
- Asahi, M., Asahi, K., Jung, J., del Zoppo, G.J., Fini, E., Lo, E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 20: 1681-1689, 2000 https://doi.org/10.1097/00004647-200012000-00007