DOI QR코드

DOI QR Code

Effect of Copper on the Regulation of Ferroportin-1 Gene Expression

구리가 Ferroportin-1 유전자 발현 조절에 미치는 영향

  • Park, Bo-Yoen (Department of Food & Nutrition, Kyung Hee University) ;
  • Chung, Ja-Yong (Department of Food & Nutrition, Kyung Hee University)
  • 박보연 (경희대학교 생활과학대학 식품영양학과) ;
  • 정자용 (경희대학교 생활과학대학 식품영양학과)
  • Published : 2009.07.31

Abstract

Ferroportin-1 (FPN) is a transporter protein that is known to mediate iron export from macrophages. The purpose of this study was to investigate the effect of copper on the regulation of FPN gene expression in J774 mouse macrophage cells. J774 cells were treated with various concentrations of $CuSO_4$ and RT-PCR analyses were performed to measure the steady-state levels of mRNAs for FPN and divalent metal transporter 1 (DMT1, an iron importer). Copper treatment significantly increased FPN mRNAs in a dose-dependent manner, but didn't change the levels of DMT1 mRNA. Experiments with transcriptional inhibitor actinomycin D (0.5 ${\mu}g$/mL) revealed that copper treatment did not affect the half-life of FPN mRNAs in J774 cells. On the other hand, results from luciferase reporter assays showed that copper directly stimulated the promoter activity of FPN. In summary, our data showed copper induced FPN mRNA of macrophages via a transcriptional rather than post-transcriptional mechanisms.

본 연구는 J774 대식세포에서 FPN 유전자 발현 조절에 구리가 미치는 영향을 알아보기 위하여 수행되었으며 그 결과는 다음과 같다. J774 대식 세포에 구리를 처리하였을 때, iron exporter FPN의 mRNA 수준이 농도 의존적으로 증가하는 것으로 나타났다. 반면, iron importer DMT1의 mRNA 수준은 구리 처리에 의해 영향을 받지 않았다. Actinomycin D를 이용하여 mRNA 합성을 억제한 상태에서 FPN mRNA 분해 정도를 시간별로 추적한 결과, acitnomycin D 처리 후 9시간 경과시 FPN mRNA 수준이 처음 수준의 약 60% 정도로 감소하였다. 배양액에 구리를 첨가한 경우에도 FPN mRNA의 분해 정도는 아무것도 처리하지 않은 대조군과 유의적인 차이가 없었으며, 이로 볼 때 구리는 FPN mRNA의 안정성에 영향을 미치지 않는 것으로 생각된다. 한편, reporter assay 실험 결과 구리의 첨가는 FPN 프로모터 활성을 유의적으로 증가시키는 것으로 나타나, 구리가 FPN mRNA의 전사 과정을 직접적으로 촉진함을 알 수 있었다. 또한, FPN 5'-UTR에 위치하는 IRE (iron response element)의 존재 여부는 구리에 의한 FPN 전사 개시 활성에 영향을 주지 않는 것으로 나타났으며, 이로 볼 때 구리는 철분과는 독립적인 작용 기작에 의해 FPN 유전자 발현을 조절하는 것으로 사료된다. 이상의 결과를 종합해 볼 때, 구리는 대식 세포에서 전사개시 과정을 활성화함으로써 농도 의존적으로 FPN 유전자 발현을 촉진하는 것으로 생각되며, 이는 구리가 철분의 대사에 미치는 새로운 작용 기작을 제시한다. 앞으로, 구리와 철 분의 상호 작용이 FPN의 철분 및 다른 무기질 이온의 세포내 외 수송 (transport)에 어떤 영향을 미치는지에 대한 기능적 연구가 계속적으로 이루어져야 할 것으로 사료된다.

Keywords

References

  1. Conrad ME, Umbreit JN. Iron Absorption and Transport-an Update Am J Hematol 2000; 64(4): 287-298 https://doi.org/10.1002/1096-8652(200008)64:4<287::AID-AJH9>3.0.CO;2-L
  2. Ganz T, Nemeth E. Regulation of Iron Acquisition and Iron Distribution in Mammals. Biochim Biophys Acta 2006; 1763(7):690-699 https://doi.org/10.1016/j.bbamcr.2006.03.014
  3. Chua AC, Graham RM, Trinder D, Olynyk JK. The Regulation of Cellular Iron Metabolism. Crit Rev Clin Lab Sci 2007; 44(5-6): 413-459 https://doi.org/10.1080/10408360701428257
  4. Abboud S, Haile DJ. A Novel Mammalian Iron-Regulated Protein Involved in Intracellular Iron Metabolism. J Biol Chem 2000; 275: 19906-19912 https://doi.org/10.1074/jbc.M000713200
  5. Muckenthaler MU, Galy B, Hentze MW. Systemic Iron Homeostasis and the Iron-Responsive element/iron-Regulatory Protein (IRE/IRP) Regulatory Network. Annu Rev Nutr 2008; 28: 197-213 https://doi.org/10.1146/annurev.nutr.28.061807.155521
  6. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron Release from Macrophages After Erythrophagocytosis is Up-Regulated by Ferroportin 1 Overexpression and Down-Regulated by Hepcidin. Proc Natl Acad Sci USA 2005; 102(5): 1324-1328 https://doi.org/10.1073/pnas.0409409102
  7. Beutler E. Hemochromatosis: Genetics and Pathophysiology. Annu Rev Med 2006; 57: 331-347 https://doi.org/10.1146/annurev.med.57.121304.131310
  8. Pietrangelo A. Hemochromatosis: An Endocrine Liver Disease. Hepatology 2007; 46(4): 1291-1301 https://doi.org/10.1002/hep.21886
  9. Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M. Iron Loading and Erythrophagocytosis Increase Ferroportin 1 (FPN1) Expression in J774 Macrophages. Blood 2003; 102(12): 4191-4197 https://doi.org/10.1182/blood-2003-04-1250
  10. Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A. The Role of the Iron Responsive Element in the Control of ferroportin1/IREG1/MTP1 Gene Expression. J Hepatol 2003; 39(5): 710-715 https://doi.org/10.1016/S0168-8278(03)00408-2
  11. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ. A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Mol Cell 2000; 5: 299-309 https://doi.org/10.1016/S1097-2765(00)80425-6
  12. Liu XB, Hill P, Haile DJ. Role of the Ferroportin Iron-Responsive Element in Iron and Nitric Oxide Dependent Gene Regulation. Blood Cells Mol Dis 2002; 29(3): 315-326 https://doi.org/10.1006/bcmd.2002.0572
  13. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-Mediated Regulation of Iron Transport in Human Monocytic Cells. Blood 2003; 101(10): 4148-4154 https://doi.org/10.1182/blood-2002-08-2459
  14. Yang F, Liu XB, Quinones M, Melby PC, Ghio A, Haile DJ. Regulation of Reticuloendothelial Iron Transporter MTP1 (Slc11a3) by Inflammation. J Biol Chem 2002; 277(42): 39786-39791 https://doi.org/10.1074/jbc.M201485200
  15. Chung J, Haile DJ, Wessling-Resnick M. Copper-Induced Ferroportin-1 Expression in J774 Macrophages is Associated with Increased Iron Efflux. Proc Natl Acad Sci USA 2004; 101(9): 2700-2705 https://doi.org/10.1073/pnas.0306622101
  16. Sareila O, Hamalainen M, Nissinen E, Kankaanranta H, Moilanen E. Orazipone inhibits activation of inflammatory transcription factors nuclear factor-kappa B and signal transducer and activator of transcription 1 and decreases inducible nitric-oxide synthase expression and nitric oxide production in response to inflammatory stimuli. J Pharmacol Exp Ther 2008; 324(2): 858-866 https://doi.org/10.1124/jpet.107.129114
  17. Gonzalez M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe C. Expression of Copper-Related Genes in Response to Copper Load. Am J Clin Nutr 2008; 88(3): 830S-834S https://doi.org/10.1093/ajcn/88.3.830S
  18. Muller P, van Bakel H, van de Sluis B, Holstege F, Wijmenga C, Klomp LW. Gene Expression Profiling of Liver Cells After Copper Overload in Vivo and in Vitro Reveals New Copper-Regulated Genes. J Biol Inorg Chem 2007; 12(4): 495-507 https://doi.org/10.1007/s00775-006-0201-y
  19. Davis SR, Cousins RJ. Metallothionein Expression in Animals: A Physiological Perspective on Function. J Nutr 2000; 130(5): 1085-1088 https://doi.org/10.1093/jn/130.5.1085
  20. Jeney V, Itoh S, Wendt M, Gradek Q, Ushio-Fukai M, Harrison DG, Fukai T. Role of Antioxidant-1 in Extracellular Superoxide Dismutase Function and Expression. Circ Res 2005; 96(7): 723-729 https://doi.org/10.1161/01.RES.0000162001.57896.66
  21. Itoh S, Ozumi K, Kim HW, Nakagawa O, McKinney RD, Folz RJ, Zelko IN, Ushio-Fukai M, Fukai T. Novel Mechanism for Regulation of Extracellular SOD Transcription and Activity by Copper: Role of Antioxidant-1. Free Radic Biol Med 2009; 46(1): 95-104 https://doi.org/10.1016/j.freeradbiomed.2008.09.039
  22. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, Akram K, McKinney RD, Ushio-Fukai M, Fukai T. Novel Role of Antioxidant-1 (Atox1) as a Copper-Dependent Transcription Factor Involved in Cell Proliferation. J Biol Chem 2008; 283(14): 9157-9167 https://doi.org/10.1074/jbc.M709463200
  23. Hart EB, Steenbock H, Waddell J, Elvehjem CA. Iron in Nutrition. VII. Copper as a Supplement to Iron for Hemoglobin Building in the Rat. 1928. J Biol Chem 2002; 277(34): e22
  24. Owen CA Jr. Effects of Iron on Copper Metabolism and Copper on Iron Metabolism in Rats. Am J Physiol 1973; 224(3): 514-518
  25. Williams DM, Kennedy FS, Green BG. Hepatic Iron Accumulation in Copper-Deficient Rats. Br J Nutr 1983; 50(3): 653-660 https://doi.org/10.1079/BJN19830136
  26. Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted Gene Disruption Reveals an Essential Role for Ceruloplasmin in Cellular Iron Efflux. Proc. Natl Acad Sci USA 1999; 96(19): 10812-10817 https://doi.org/10.1073/pnas.96.19.10812
  27. Yamamoto K, Yoshida K, Miyagoe Y, Ishikawa A, Hanaoka K, Nomoto S, Kaneko K, Ikeda S, Takeda S. Quantitative Evaluation of Expression of Iron-Metabolism Genes in Ceruloplasmin-Deficient Mice. Biochim Biophys Acta 2002; 1588(3): 195-202 https://doi.org/10.1016/S0925-4439(02)00165-5
  28. Hellman NE, Gitlin JD. Ceruloplasmin Metabolism and Function. Annu Rev Nutr 2002; 22: 439-458 https://doi.org/10.1146/annurev.nutr.22.012502.114457
  29. Bates GW, Workman EF Jr, Schlabach MR. Does Transferrin Exhibit Ferroxidase Activity? Biochem Biophys Res Commun 1973; 50(1): 84-90 https://doi.org/10.1016/0006-291X(73)91067-X
  30. Mukhopadhyay CK, Attieh ZK, Fox PL. Role of Ceruloplasmin in Cellular Iron Uptake. Science 1998; 279(5351): 714-717 https://doi.org/10.1126/science.279.5351.714
  31. Attieh ZK, Mukhopadhyay CK, Seshadri V, Tripoulas NA, Fox PL. Ceruloplasmin Ferroxidase Activity Stimulates Cellular Iron Uptake by a Trivalent Cation-Specific Transport Mechanism. J Biol Chem 1999; 274(2): 1116-1123 https://doi.org/10.1074/jbc.274.2.1116
  32. Sarkar J, Seshadri V, Tripoulas NA, Ketterer ME, Fox PL. Role of Ceruloplasmin in Macrophage Iron Efflux during Hypoxia. J Biol Chem 2003; 278(45): 44018-44024 https://doi.org/10.1074/jbc.M304926200