Influence of Polycyclic Aromatic Hydrocarbons Formation in Sesame Oils with Different Roasting Conditions

참깨의 볶음 조건이 참기름 중 polycyclic aromatic hydrocarbons 생성에 미치는 영향

  • Seo, Il-Won (Department of Food Science and Technology and Institute of Lotus Functional Food Ingredient, Dongguk University) ;
  • Nam, He-Jung (Department of Food Science and Technology and Institute of Lotus Functional Food Ingredient, Dongguk University) ;
  • Shin, Han-Seung (Department of Food Science and Technology and Institute of Lotus Functional Food Ingredient, Dongguk University)
  • 서일원 (동국대학교 식품공학과 및 Lotus기능성식품소재연구소) ;
  • 남혜정 (동국대학교 식품공학과 및 Lotus기능성식품소재연구소) ;
  • 신한승 (동국대학교 식품공학과 및 Lotus기능성식품소재연구소)
  • Published : 2009.08.31

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are environmental carcinogenic compounds that arise by several means including food processing methods such as smoking and direct drying and cooking. This study examined the concentration of PAHs in sesame oils with various roasting temperatures (190, 220 and $250^{\circ}C$), methods (direct heating vs. indirect hot air heating), and times (5, 10, 15, 20 and 25 min). The PAHs in the sesame oils were analyzed using liquid-liquid extraction and solid-phase clean up (Florisil), followed by HPLC with fluorescence detection. According to the results, mean levels of total PAHs increased when the sesame oils were roasted at increasing temperatures and times. The sesame oil roasted at $250^{\circ}C$ for 25 min had the highest mean value of total PAHs (4.66 ${\mu}g$/kg). The results of this study suggest that the indirect hot air roasting method decreased PAH formation during sesame oil processing.

본 연구는 참기름 제조 과정 중 참깨를 볶는 과정에서 온도와 시간에 따른 PAHs 생성량 변화를 분석하고 볶음방법에 따라 PAHs 생성량의 변화를 알아보고자 실시하였다. 분석 표준물질은 돌연변이원성과 발암성이 있는 것으로 알려진 8가지 PAH를 선정하여 HPLC/FLD를 이용하여 정성 정량분석을 하였고, 제조한 참기름의 색도를 비교해보기 위해 색차계를 이용하여 명도(L), 적색도(a), 황색도(b)를 측정하였다. 분석 결과 참깨를 볶는 온도와 시간에 따라 PAHs 함량은 1.67-4.66 ${\mu}g$/kg으로 증가하였다. 가열 온도가 증가할수록 PAHs 생성량은 유의적으로 증가하였다. 가열 시간에 따른 PAHs 함량을 비교해보면, 190, $220^{\circ}C$에서 가열 시간이 늘어날수록 PAHs 생성량은 다소 증가하였으나 유의적인 차이가 없었지만, 고온인 $250^{\circ}C$에서는 볶음 시간이 늘어남에 따라 PAHs 생성량은 유의적인 차이를 보였다. 볶음 방법에 따른 PAHs 함량은 간접가열 방식인 열풍을 이용하여 참깨를 볶은 후 착유한 참기름이 직접가열 방식으로 볶은 후 착유한 참기름보다 적게 검출되었다. 참기름의 색도를 비교했을 때 온도와 시간이 증가함에 따라 명도(L)와 황색도(b)는 감소하였고, 적색도(b)는 증가하였다. 볶음 방법 중 열풍가열 조건에서 $250^{\circ}C$에서 10-25분 볶은 후 착유한 참기름의 색도가 시중에 판매되고 있는 참기름과의 색도와 비슷한 결과값을 나타냈다. 반면에 직접 가열 조건에서 볶은 참깨를 착유한 참기름의 색도는 시중에 판매되는 참 기름 보다 명도(L), 적색도(a), 황색도(b)가 낮아 어둡고 탁한 색을 띄어 품질적인 차이를 보였다. 결론적으로 PAHs 생성량을 고려해 볼 때 참기름 제조에 가장 적당한 볶음 온도와 시간은 낮을수록 좋으나 색도에서 품질적인 차이를 보였다. 이에 따라 본 실험을 통해 색도, 가열온도와 시간, 가열방법을 생각해 볼 때, 열풍 가열방법 $250^{\circ}C$에서 10분간 볶은 후 착유하는 참기름 제조 방법이 가장 효율적인 가공방법으로 판단되었다.

Keywords

References

  1. Phillips DH. Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 443: 139-147 (1999) https://doi.org/10.1016/S1383-5742(99)00016-2
  2. Wenzl T, Simon R, Kleiner J, Anklam E. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. Trends Anal. Chem. 25: 716-725 (2006) https://doi.org/10.1016/j.trac.2006.05.010
  3. Kazerouni N, Sinha R, Hus CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 39: 423-436 (2001) https://doi.org/10.1016/S0278-6915(00)00158-7
  4. Tilgner DJ, Daun H. Polycyclic aromatic hydrocarbons in smoked foods. Residue Rev. 27: 19-41 (1969)
  5. Gunther FA, Buzzetti F. Occurrence, isolation, and identification of polynuclear hydrocarbons as residues. Residue Rev. 23: 90-113 (1965)
  6. U.S. EPA. U.S. EPA Method 610. Methods for organic chemical analysis of municipal and industrial wastewater. U.S Environmental Protection Agency, Washington, DC, USA (1984)
  7. European Commission. Commission Regulation No 1881. Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 49: 5-24 (2006)
  8. IARC. IARC Monographs in the Evaluation of carcinogenic Risks to Humans. Suppl. 7. International Agency for Research on Cancer, Lyon, France (1987)
  9. WHO. Recommendations for the revision of guidelines for predicting dietary intake of pesticide residues. Report of a FAO/WHO consultation. WHO/FNU/FOS/95.11. World Health Organization, Geneva, Switzerland (1995)
  10. Douglass JS, Tennant DR. Estimations of dietary intake of food chemicals. pp. 195-218. In: Food Chemical Risk Analysis. Tennant DR (ed). Blackie Academic Professional, London, UK (1997)
  11. Tasi PJ, Shieh HY, Lee WJ, Lai SO. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Sci. Total Environ. 278: 137-150 (2001) https://doi.org/10.1016/S0048-9697(01)00643-X
  12. Nisbet, ICT, Lagoy, PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16: 290-300 (1992) https://doi.org/10.1016/0273-2300(92)90009-X
  13. Kluska M. Soil contamination with polycyclic aromatic hydrocarbons in the vicinity of the ring road in siedlce city. Pol. J. Environ. Stud. 12: 309-313 (2003)
  14. Voutsa D, Terzi H, Muller L, Samara C, Kouimtzis TH. Profile analysis of organic micropollutants in the environment of a coal burning area. Chemosphere 55: 595-604 (2004) https://doi.org/10.1016/j.chemosphere.2003.11.023
  15. Chung SY, Sho YS, Park SK, Lee EJ, Suh JH, Choi WJ, Kim JS, Kim MH, Kwon KS, Lee JO, Kim HY, Lee CW. Concentrations of polycyclic aromatic hydrocarbons in vegetable oils and fats. Korean J. Food Sci. Technol. 36: 668-691 (2004)
  16. Hu SJ, Oh NS, Kim SY, Lee HM. Determining of polycyclic aromatic hydrocarbons in domestic vegetables and fruits. Anal. Sci. Technol. 19: 415-421 (2006)
  17. Kim HY, Song DS. Minimizing Benzo(a)pyrene content in the manufacturing of sesame oil and perilla oil. Korean J. Food Preserv. 15: 556-561 (2008)
  18. Moret S, Dudine A, Conte LS. Processing effects on the polycyclic aromatic hydrocarbon content of grapeseed oil. J. Am. Chem. Soc. 77: 1289-1292 (2000) https://doi.org/10.1007/s11746-000-0203-5