In vitro culture of adventitious root from Rhodiola sachalinensis

기내배양을 통한 홍경천(Rhodiola sachalinensis)의 부정근 생산

  • Bae, Kee-Hwa (Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Yoon, Eui-Soo (Department of Biological Science, Kongju National University) ;
  • Choi, Yong-Eui (Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
  • Published : 2009.08.30

Abstract

Rhodiola sachalinensis is one of the most popular oriental medicines in East Asia. It is a perennial herb, belonging to the family Crassulaceae, which is mainly distributed in mountains at the altitudes of 1700-2500 m in Baek-Du mountain. Cultivation of this species for the production of medicine materials is not easy in nature, because of restrict habitats. In vitro production of roots can be applicable for the production of medicinal materials. Here, we investigated the optimal conditions for induction and proliferation of adventitious roots in in vitro culture system. Leaf, stem and root segments from R. sachalinensis were cultured on Murashige and Skoog(MS) medium supplemented with the various concentrations of IBA(Indole-3-butyric acid)(0.5, 1.0, 3.0, and 5.0 mg/L) and sucrose(10, 30, 50, and 100 g/L). The optimal explant for adventitious root induction was leaf segment. Induction of adventitious roots was highest on MS medium supplemented with 5.0 mg/L IBA and sucrose 30 g/L. In liquid culture, fresh weight of adventitious roots was highest(15.65 g) on 1/3 strength MS liquid medium supplemented with 5.0 mg/L IBA with 30 g/L sucrose. These results revealed the first attempt for the production of adventitious roots in R. sachalinensis.

홍경천의 잎, 줄기, 뿌리 절편을 이용하여 기내 부정근의 생산 체계를 확립하였다. 먼저 홍경천의 잎, 줄기, 뿌리 절편을 0.1, 1.0, 3.0 및 5,0 mg/L의 IBA와 sucrose가 10, 30, 50 및 100 g/L가 첨가된 MS 배지위에 치상하여 부정근의 유도율을 조사하였다. 부정근의 유도는 잎, 줄기 절편에서 IBA의 농도가 5.0 mg/L 일때 가장 높은 유도율을 보였으며, 뿌리 절편은 IBA 3.0 mg/L 첨가된 배지에서 부정근 유도율이 가장 높았다. Sucrose의 농도는 30 g/L가 첨가되었을 때 잎, 줄기, 뿌리 절편에서 높은 유도율을 나타났다. 고체배지 조건에서 부정근의 유도율이 가장 우수한 조건을 기본으로 액체배양을 실시하였으며, 염의 농도에 따른 부정근의 증식조건을 조사하였다. 1/3MS 배지에서 홍경천의 부정근을 배양하였을 때 1/2MS, MS 액체 배지조건 보다 약 2배, 2.5배의 부정근 생장량을 보였다.

Keywords

References

  1. Ahn, J.H. and S.Y. Lee. 2004. Effects of growth regulators on callus induction and plant regeneration from leaf explants of Sedium sarmentation. Kor. J. Plant Biotech. 31:25-29.(in Korean) https://doi.org/10.5010/JPB.2004.31.1.025
  2. Bae, K.H., S. Lim, E.S. Yoon, C.G. Shin, Y.Y. Kim and Y.S. Kim. 2005. Effect of cytokinin and putrescine on plant regeneration from leaf explant of Rhodiola sachalinensis A. Bor. Kor. J. Plant Biotech. 32:195-199.(in Korean) https://doi.org/10.5010/JPB.2005.32.3.195
  3. Chang, S.W., I.H. Kim and T.J. Han. 1999. Anthraquinone productivity by the cultures of adventitious roots and hairy roots from Cureled dock(Rumex crispus). Kor. J. Plant Tiss. Cult. 26:7-14
  4. Choi, D.Y., S.Y. Ahn, S.G. Lee, J.S. Han, E.C. Kim, H.B. Lee, J.H. Shin, E.K. Kim and K.H. Row. 2004. Separation and performance test of whitening agent in Rhodiola sachalinensis. Kor. J. Biotech. Bioeng. 3:169-173.(in Korean)
  5. Jiang, M., W. Zhong and H. Han. 1994. Studies on producing effective medicinal ingredients of Rhodiola sachalinensis by tissue culture. Chin. J. Shen. Univ. 25:355-359
  6. Jung, S.J., J.H. Jeong, E.S. Yoon and Y.E. Choi. 2007. Plant regeneration from callus and adventitious root segments of Pulsatilla koreana Nakai. Kor. J. Plant Biotech. 34:153-159 https://doi.org/10.5010/JPB.2007.34.2.153
  7. Kim, J.A., X.L. You, C.H. Ahn, J.S. Lee and Y.E. Choi. 2007. Plant regeneration via direct adventitious roots from free root segments of Ulmus davidiana Planch. J. Kor. Forest Soc. 96: 83-88.(in Korean)
  8. Kim, S.J., B. Hwang, S.J. Hwang and J.C. Ahn. 2004. Production of salidroside from callus culture of Rhodiola sachalinensis A. Bor. Kor. J. Plant Biotech. 1: 89-94.(in Korean)
  9. Lee, M.W., Y.H. Lee, H.M. Park, S.H. Tosh, E.J. Lee, H.D. Jang and Y.H. Kim. 2000. Antioxidant phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch. Pharm. Res. 23:455-458 https://doi.org/10.1007/BF02976571
  10. Li, H.B. and F. Chen. 2001. Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensis by high-speed counter-current chromatography. J. Chroma. 932:91-95 https://doi.org/10.1016/S0021-9673(01)01232-8
  11. Linch, P.T., Y.H. Kim, S.P. Hong, J.J. Jian and J.S. Kang. 2000. Quantitative determanation of salidroside and tyrosol from the chromatography. Arch. Pharm. Res. 23:349-352 https://doi.org/10.1007/BF02975446
  12. Ming, H.Q., G.C. Xia and R.D. Zhang. 1988. Advanced research on Rhodiola. Chin. Trad. Herbal. Drugs. 19:229-234
  13. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Oh, J.K., O.Y. Shin, H.J. Jung and E.J. Lee. 2006. Effect of Rhodiola sachalinensis administration and endurance exercise on insulin sensitivity and expression of proteins related with glucose transport in skeletal musele of obese zucker rat. The J. of Kor. Nutrition Soc. 39:323-330(in Korean)
  15. Petkov, V.D., D. Yonkov, A. Mosharoff, T. Kambourova, L. Alova, V. Petkov and I. Todorov. 1986. Effects of alcohol aqueous extract from Rhodiola rose L. root on learning and memory. Act. Physiol. Pharmacol. Bulg. 12:3-16
  16. Shimomura, K., H. Sudo, H. Saga and H. Kamada. 1991. Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 10:282-285 https://doi.org/10.1007/BF00193142
  17. Toivonen, L. and Rosenqvist H. 1995. Establishment and growth characteristics of Glycyrrhiza glabra hairy root culture. Plant Cell Tissue Org Culture 41: 249-258 https://doi.org/10.1007/BF00045089
  18. Yu, K.W., Hahn E.J. and K.Y. Paek. 2000. Production of adventitious ginseng roots using bioreactor. Kor. J. Plant. Tiss. Cult. 27:309-315.(in Korean)
  19. Wu, S.X., Y.G. Zu and M. Wu. 2003. High yield production of salidroside in suspension culture of Rhodiola sachalinensis. J. Biotech. 106:33-43 https://doi.org/10.1016/j.jbiotec.2003.07.009
  20. Xu, J.F., Z.G. Su and P.S. Feng. 1998a. Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell culture. J. Biotech. 61:69-73 https://doi.org/10.1016/S0168-1656(98)00011-X
  21. Xu, J.F., Z.G. Su and P.S. Feng. 1998b. Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzym. and Micro. Tech. 23:20-27 https://doi.org/10.1016/S0141-0229(98)00011-8
  22. Yan, XF, S.X. Wu, Y. Wang, X.H. Shang and S.J. Dai. 2004. Soil nutrient factors related to salidroside production of Rhodiola sachalinensis distributed in Chang Bai Mountain. Env. Exp. Bot. 53:267-276 https://doi.org/10.1016/j.envexpbot.2004.02.005
  23. Yoon., E.S. 1997. Effect of plant growth regulators on plant regeneration from leaf and stem explant culture of Sedium erythrostichum Miq. Kor. J. Plant Biotech. 24:285-289.(in Korean)
  24. Zhong, Y., K. Lowell, J.A. Ping, C.T. Che, J.M. Pezzuto and H.H. Fong. 1991. Phenolic constituents of Rhodiola coccinea a tibetian folk medicine. Planta Med. 57:589 https://doi.org/10.1055/s-2006-960220