DOI QR코드

DOI QR Code

Severe Hemorrhage Induced Expressions of Ferritin and Heme Oxygenase-1 In Leukocytes

출혈로 인한 폐 염증세포에서의 ferritin과 heme oxygenase-1의 발현

  • Kwon, Jung-Wan (Department of Physiology, School of Medicine, Catholic University of Daegu) ;
  • Park, Yoon-Yub (Department of Physiology, School of Medicine, Catholic University of Daegu)
  • 권정완 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 박윤엽 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2009.07.30

Abstract

Serum ferritin levels are elevated in subjects with acute lung injury (ALI), and abnormalities in plasma and lung iron chemistry have also been demonstrated in ALI and acute respiratory distress syndrome (ARDS). Stress-inducible heme oxygenase-1 (HO-1), as well as ferritin, had shown anti-inflammatory actions. Biomarkers for early detection in patients who are likely to develop ARDS would give several therapeutic chances to the patients. In order to verify the predictability in severe hemorrhage-induced ALI in rats, we measured serum ferritin and HO-1 concentrations before and after hemorrhage. Severe hemorrhages significantly increased the number of leukocytes in bronchoalveolar lavage (BAL) fluid and lung tissue myeloperoxidase activity. Both serum ferritin and HO-1 levels increased following hemorrhage, but ferritin levels were elevated earlier than HO-1. In BAL cell immunohistochemical studies, ferritin and HO-1 expressions increased after hemorrhage and localized in the cytoplasm of leukocytes. These findings suggest that inflammatory leukocytes in BAL fluid can secrete ferritin and HO-1, and serum ferritin levels might be more valid factor in predicting ARDS than HO-1 levels in hemorrhage-induced ALI.

급성 폐손상과 급성 호흡곤란 증후군은 치사율이 매우 높은 질환임에도 불구하고 현재까지 뚜렷한 치료법이 확립되지 않아서 조기진단에 많은 관심을 기울이고 있다. 본 실험에서는 출혈성 쇼크로 유발되는 급성 폐손상 모델에서 철대사를 조절하는 인자로 알려진 heme oxygenase-1 (HO-1)과 ferritin의 변화 양상을 알아보고 급성 폐손상 또는 급성 호흡곤란 증후군의 조기진단인자로서 적합한지를 알아보고자 하였다. 실험동물은 체중 300-450g의 sprague-Dawley rat을 사용하였으며, 급성폐손상과 ferritin 및 HO-1변화의 관계를 알아보기 위하여 정상군(Sham), 출혈군 및 phospholipase A$_2$ 억제제인 mepacrine (60mg/kg, iv)을 전처치한 출혈군으로 나누어 실험하였다. Sham군은 출혈군과 동일하게 수술하고 출혈은 시키지 않았으며 나머지 과정은 출혈군과 동일하게 처리하였다. 출혈은 withdrawal pump를 이용하여 분당 4ml/kg의 속도로 5분간 총 체중kg 당 20ml의 혈액을 대퇴동맥에 연결한 관을 통하여 출혈시켰다. 출혈로 인하여 급성 폐손상이 유발되었으며 이는 mepacrine 전처치로 유의하게 억제되었다. 출혈 후 혈장 단백질 농도는 감소하였으나 혈장 ferritin 농도는 출혈 60분 후부터, HO-1 농도는 90분 후부터 증가하여 2시간 후에는 Shanm군에 비해 크게 증가하였으며, 이는 mepacrine 전처치한 경우에서 유의하게 둔화되었다. 폐세척액 내의 세포에서 ferritin과 HO-1의 발현량은 출혈군에서 가장 크게 나타났고, mepacrine을 전 처치한 출혈군에서 발현량이 줄어들었다. 이상의 결과로 살펴볼 때 혈장 ferritin및 HO-1은 출혈성 쇼크로 유발되는 급성 폐손상의 정도와 밀접한 상관관계를 가지고, 비록 정도의 차이는 있더라도 폐세척액 내의 염증성 세포에서도 발현량이 증가하는 것을 관찰할 수 있었다. 그러므로, 혈장의 ferritin 및 HO-1농도를 급성 폐손상 및 급성 호흡곤란 증후군의 조기진단을 위한 간접적인 생체지표로 사용할 수 있을 것으로 보이며, 이 실험 모델에서는 ferritin이 HO-1보다 더 예민한 인자로 평가된다.

Keywords

References

  1. Arosio, P. and S. Levi. 2002. Ferritin, iron homeostasis, and oxidative damage. Free Rad. Biol. Med. 33, 457-463 https://doi.org/10.1016/S0891-5849(02)00842-0
  2. Balla, G., H. S. Jacob, J. Balla, M. Rosenberg, K. Nath, F. Apple, J. W. Eaton, and G. M. Vercellotti. 1992. Ferritin: a cytoprotective antioxidant stratagem of endothelium. J. Biol. Chem. 267, 18148-18153
  3. Balla, J., K. A. Nath, G. Balla, M. B. Juckett, H. S. Jacob, and G. M. Vercellotti. 1995. Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. Am. J. Physiol. 268, L321-L327
  4. Cairo, G., L. Tacchini, G. Pogliaghi, E. Anzon, A. Tomasi, and A. Bernelli-Zazzera. 1995. Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the 'free' iron pool. J. Biol. Chem. 270, 700-703 https://doi.org/10.1074/jbc.270.2.700
  5. Chabot, F., J. A. Mitchell, J. M. C. Gutteridge, and T. W. Evans. 1998. Reactive oxygen species in acute lung injury. Eur. Respir. J. 11, 745-757
  6. Chandel, N. S., W. C. Trzyna, D. S. McClintock, and P. T. Schumacker. 2000. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 165, 1013-1021 https://doi.org/10.4049/jimmunol.165.2.1013
  7. Choi, A. M. and J. Alam. 1996. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir. Cell Mol. Biol. 15, 9-19 https://doi.org/10.1165/ajrcmb.15.1.8679227
  8. Connelly, K. G. and J. E. Repine. 1997. Markers for predicting the development of acute respiratory distress syndrome. Annu. Rev. Med. 48, 429-445 https://doi.org/10.1146/annurev.med.48.1.429
  9. Connelly, K. G., M. Moss, P. E. Parsons, E. E. Moore, F. A. Moore, P. C. Giclas, P. A. Seligman, and J. E. Repine. 1997. Serum ferritin as a predictor of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 155, 21-25 https://doi.org/10.1164/ajrccm.155.1.9001283
  10. Epsztejn, S., H. Glickstein, V. Picard, I. N. Slotki, W. Breuer, C. Beaumont, and Z. I. Cabantchik. 1999. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94, 3593-3603
  11. Garner, B., K. Roberg, and U. T. Brunk. 1998. Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radic. Res. 29, 103-114 https://doi.org/10.1080/10715769800300121
  12. Ghio, A. J., J. D. Carter, J. H. Richards, L. D. Richer, C. K. Grissom, and M. R. Elstad. 2003. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Crit. Care Med. 31, 395-400 https://doi.org/10.1097/01.CCM.0000050284.35609.97
  13. Gutteridge, J. M. C., G. J. Quinlan, S. Mumby, A. Heath, and T. W. Evans. 1994. Primary plasma antioxidants in adult respiratory distress syndrome patients: Changes in iron-oxidizing, iron-binding, and free radical-scavenging proteins. J. Lab. Clin. Med. 124, 263-273
  14. Gutteridge, J. M. C., S. Mumby, G. J. Quinlan, K. F. Chung, and T. W. Evans. 1996. Pro-oxidant iron is present in human pulmonary epithelial lining fluid: implications for oxidative stress in the lung. Biochem. Biophys. Res. Commun. 220, 1024-1027 https://doi.org/10.1006/bbrc.1996.0518
  15. Hudson, L. D., J. A. Milberg, D. Anardi, and R. J. Maunder. 1995. Clinical risks for the development of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 151, 293-301 https://doi.org/10.1164/ajrccm.151.2.7842182
  16. Lee, P. J., S. L. Camhi, B. Y. Chin, J. Alam, and A. M. Choi. 2000. AP-1 and STAT mediate hyperoxia-induced gene transcription of heme oxygenase-1. Am. J. Physiol. 279, L175-L182
  17. Lee, Y. M., B. M. Hybertson, H. G. Cho, L. S. Terada, O. Cho, A. J. Repine, and J. E. Repine. 2000. Platelet-activating factor contributes to acute lung leak in rats given interleukin-1 intratracheally. Am. J. Physiol. 279, L75-L80
  18. Li, N., M. I. Venkatesan, A. Miguel, R. Kaplan, C. Gujuluva, J. Alam, and A. Nel. 2000. Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. Immunol. 165, 3393-3401 https://doi.org/10.4049/jimmunol.165.6.3393
  19. Louie, S., B. Halliwell, and C. E. Cross. 1997. Adult respiratory distress syndrome: a radical perspective. Adv. Pharmacol. 38, 457-490 https://doi.org/10.1016/S1054-3589(08)60995-3
  20. McCord, J. M. 1985. Oxygen-derived free radicals in post-ischemic tissue injury. N. Engl. J. Med. 312, 159-163 https://doi.org/10.1056/NEJM198501173120305
  21. Miller, L. L., S. C. Miller, S. V. Torti, Y. Tsuji, and F. M. Torti. 1991. Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc. Natl. Acad. Sci. USA 88, 4946-4950 https://doi.org/10.1073/pnas.88.11.4946
  22. Morris, C. J., J. R. Earl, C. W. Trenam, and D. R. Blake. 1995. Reactive oxygen species and iron-a dangerous partnership in inflammation. Int. J. Biochem. Cell Biol. 27, 109-122 https://doi.org/10.1016/1357-2725(94)00084-O
  23. Morse, D. and A. M. Choi. 2002. Heme oxygenase-1: the 'emerging molecule' has arrived. Am. J. Respir. Cell Mol. Biol. 27, 8-16 https://doi.org/10.1165/ajrcmb.27.1.4862
  24. Mumby, S., R. L. Upton, Y. Chen, S. J. Stanford, G. J. Quinlan, A. G. Nicholson, J. M. Gutteridge, N. J. Lamb, and T. W. Evans. 2004. Lung heme oxygenase-1 is elevated in acute respiratory distress syndrome. Crit. Care Med. 32, 1130-1135 https://doi.org/10.1097/01.CCM.0000124869.86399.F2
  25. Otterbein, L. E., M. P. Soares, K. Yamashita, and F. H. Bach. 2003. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449-455 https://doi.org/10.1016/S1471-4906(03)00181-9
  26. Otterbein, L., B. Y. Chin, S. L. Otterbein, V. C. Lowe, H. E. Fessler, and A. M. Choi. 1997. Mechanism of hemoglobin-induced protection against endotoxemia in rats: a ferritin-independent pathway. Am. J. Physiol. 272, L268-L275
  27. Park, S. D. and Y.-Y. Park. 2006. Changes of serum ferritin in acute lung injury induced by intestinal ischemia/ reperfusion. Korean J. Physiol. Pharmacol. 10, 187-191
  28. Park, Y.-Y., B. M. Hybertson, R. M. Wright, M. A. Fini, N. D. Elkins, and J. E. Repine. 2004. Serum ferritin elevation and acute lung injury in rats subjected to hemorrhage: Reduction by mepacrine treatment. Exp. Lung Res. 30, 571-584 https://doi.org/10.1080/01902140490489207
  29. Park, Y.-Y. and Y. M. Lee. 2006. Effects of aspirin on the pathogenesis of acute lung injury in rats subjected to hemorrhage. Tuberc. Respir. Dis. 60, 83-91 https://doi.org/10.4046/trd.2006.60.1.83
  30. Park, Y.-Y., B. M. Hybertson, R. M. Wright, and J. E. Repine. 2003. Serum ferritin increases in hemorrhaged rats that develop acute lung injury: effect of an iron-deficient diet. Inflammation 27, 257-263 https://doi.org/10.1023/A:1025044732423
  31. Quinlan, G. J., T. W. Evans, and J. M. Gutteridge. 2002. Iron and the redox status of the lungs. Free Radic. Biol. Med. 33, 1306-1313 https://doi.org/10.1016/S0891-5849(02)00903-6
  32. Repine, J. E. 1992. Scientific perspectives on adult respiratory distress syndrome. Lancet 339, 466-469 https://doi.org/10.1016/0140-6736(92)91067-I
  33. Rogers, J. T., K. R. Bridges, G. P. Durmowicz, J. Glass, P. E. Auron, and H. N. Munro. 1990. Translational control during the acute phase response. Ferritin synthesis in response to interleukin-1. 14572-14578. 265, 14572-14578 https://doi.org/10.1136/ard.61.1.79
  34. Sharkey, R. A., S. C. Donnelly, K. G. Connelly, C. E. Robertson, C. Haslett, and J. E. Repine. 1999. Initial serum ferritin levels in patients with multiple trauma and the subsequent development of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 159, 1506-1509 https://doi.org/10.1164/ajrccm.159.5.9809027
  35. Stocker, R., Y. Yamamoto, A. F. McDonagh, A. N. Glazer, and B. N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046 https://doi.org/10.1126/science.3029864
  36. Tenhunen, R., H. S. Marver, and R. Schmid R. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61, 748-755 https://doi.org/10.1073/pnas.61.2.748
  37. Terry, C. M., J. A. Clikeman, J. R. Hoidal, and K. S. Callahan. 1999. TNF-$\alpha$ and IL-1$\alpha$ induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells. Am. J. Physiol. 276, H1493-H1501
  38. Willis, D., A. R. Moore, R. Frederick, and D. A. Willoughby. 1996. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat. Med. 2, 87-90 https://doi.org/10.1038/nm0196-87
  39. Zweifach, B. W. 1974. Mechanisms of blood flow and fluid exchange in microvessels: hemorrhagic hypotension model. Anesthesiology 41, 157-168 https://doi.org/10.1097/00000542-197408000-00006