DOI QR코드

DOI QR Code

SCG10, a Microtubule-Destabilizing Factor, Interacts Directly with Kinesin Superfamily KIF1A Protein in Brain

Kinesin superfamily KIF1A와 결합하는 미세소관 불안정화 단백질 SCG10의 규명

  • Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Published : 2009.07.30

Abstract

Microtubules, a major cytoskeleton, form parallel arrays in the axon and are oriented with their plus ends toward the cell periphery. Kinesin superfamily proteins (KIFs) are the molecular motors acting in the microtubule-based motilities of organelles in cells. Here, we used the yeast two-hybrid system to identify the protein that interacts with the coiled-coil domain of KIF1A and found a specific interaction with microtubule-destabilizing factor SCG10. SCG10 bound to the amino acid residues between 400 and 820 of KIF1A, but not to other KIFs in the yeast two-hybrid assay. The coiled-coil domain of SCG10 is essential for interaction with KIF1A. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SCG10 specifically co-immunoprecipitated KIF1A associated with SCG10 from mouse brain extracts. These results suggest that KIF1A motor protein transports SCG10-containing vesicles along microtubules in neurons.

미세소관은 세포골격단백질의 중요한 구성 단백질로 축삭돌기 내에서는 세포막 방향으로 정렬되어 있다. Kinesin superfamily (KIFs)는 세포 내에서 미세소관을 따라 세포 내 소포들을 운반하는 분자 자동차 (molecular motor) 단백질이다. 본 연구에서 우리는 효모 two-hybrid system을 사용하여 KIF1A의 coiled-coil 영역과 결합하는 단백질로 미세소관 불안정화 요소인 SCG10 단백질을 분리하였다. SCG10은 KIFs에서 KIF1A와만 특이적으로 결한 하며, KIF1A의 400에서 820아미노산 부위가 SCG10과의 결합에 필수적임을 효모 two-hybrid assay로 확인하였다. 또한 SCG10의 coiled-coil영역은 KIF1A와의 결합에 필수영역임을 확인하였으며 단백질간의 결합은 Glutathione S-transferase pull-down assay를 통하여 확인하였다. 생쥐의 뇌 파쇄액에 SCG10항체로 면역침강을 행하여 KIF1A를 확인한 결과KIF1A는 SCG10과 특이적으로 같이 침강하였다. 이러한 결과들은 KIF1A는 SCG10와 결합하여 SCG10이 포함된 소포를 미세소관을 따라 이동시킴을 시사한다.

Keywords

References

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 https://doi.org/10.1083/jcb.119.5.1287
  2. Almenar-Queralt, A. and L. S. Goldstein. 2001. Linkers, packages and pathways: new concepts in axonal transport. Curr. Opin. Neurobiol. 11, 550-557 https://doi.org/10.1016/S0959-4388(00)00248-8
  3. Baas, P. W., J. S. Deitch, M. M. Black, and G. A. Banker. 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335-8339 https://doi.org/10.1073/pnas.85.21.8335
  4. Burton, P. R. 1988. Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 473, 107-115 https://doi.org/10.1016/0006-8993(88)90321-6
  5. Cassimeris, L. 2002. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18-24 https://doi.org/10.1016/S0955-0674(01)00289-7
  6. Dell, K. R. 2003. Dynactin polices two-way organelle traffic. J. Cell Biol. 160, 291-293 https://doi.org/10.1083/jcb.200301040
  7. Dent, E. W. and F. B. Gertler. 2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209-227 https://doi.org/10.1016/S0896-6273(03)00633-0
  8. Di Paolo, G., R. Lutjens, A. Osen-Sand, A. Sobel, S. Catsicas, and G. Grenningloh. 1997. Differential distribution of stathmin and SCG10 in developing neurons in culture. J. Neurosci. Res. 50, 1000-1009 https://doi.org/10.1002/(SICI)1097-4547(19971215)50:6<1000::AID-JNR10>3.0.CO;2-8
  9. Di Paolo, G., R. Lutjens, V. Pellier, S. A. Stimpson, M. H. Beuchat, S. Catsicas, and G. Grenningloh. 1997. Targeting of SCG10 to the area of the Golgi complex is mediated by its NH2-terminal region. J. Biol. Chem. 272, 5175-5182 https://doi.org/10.1074/jbc.272.8.5175
  10. Dorner, C., T. Ciossek, S. Muller, P. H. Moller, A. Ullrich, and R. Lammers. 1998. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J. Biol. Chem. 273, 20267-20275 https://doi.org/10.1074/jbc.273.32.20267
  11. Dorner, C., A. Ullrich, H. U. Haring, and R. Lammers. 1999. The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J. Biol. Chem. 274, 33654-33660 https://doi.org/10.1074/jbc.274.47.33654
  12. Goldstein, L. S. and Z. Yang. 2000. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71 https://doi.org/10.1146/annurev.neuro.23.1.39
  13. Goldstein, L. S. 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. U S A 98, 6999-7003 https://doi.org/10.1073/pnas.111145298
  14. Gordon-Weeks, P. R. 2004. Microtubules and growth cone function. J. Neurobiol. 58, 70-83 https://doi.org/10.1002/neu.10266
  15. Grenningloh, G., S. Soehrman, P. Bondallaz, E. Ruchti, and H. Cadas. 2004. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 58, 60-69 https://doi.org/10.1002/neu.10279
  16. Griffin, J. W. and D. F. Watson. 1988. Axonal transport in neurological disease. Ann. Neurol. 23, 3-13 https://doi.org/10.1002/ana.410230103
  17. Hall, D. H. and E. M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847 https://doi.org/10.1016/0092-8674(91)90391-B
  18. Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661-665 https://doi.org/10.1083/jcb.91.3.661
  19. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526 https://doi.org/10.1126/science.279.5350.519
  20. Hirokawa, N., and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089-1118 https://doi.org/10.1152/physrev.00023.2007
  21. Hurd, D. D. and W. M. Saxton. 1996. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075-1085
  22. Kamal, A. and L. S. Goldstein. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508 https://doi.org/10.1016/S0955-0674(00)00123-X
  23. Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384
  24. Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27 https://doi.org/10.1016/S0962-8924(01)02184-5
  25. Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. Journal of Life Science 17, 889-895 https://doi.org/10.5352/JLS.2007.17.7.889
  26. Klopfenstein, D. R. and R. D. Vale. 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol. Biol. Cell 15, 3729-3739 https://doi.org/10.1091/mbc.E04-04-0326
  27. Lutjens, R., M. Igarashi, V. Pellier, H. Blasey, G. Di Paolo, E. Ruchti, C. Pfulg, J. K. Staple, S. Catsicas, and G. Grenningloh. 2000. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur. J. Neurosci. 12, 2224-2234 https://doi.org/10.1046/j.1460-9568.2000.00112.x
  28. Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011 https://doi.org/10.1073/pnas.111145398
  29. Mori, N. and H. Morii. 2002. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J. Neurosci. Res. 70, 264-273 https://doi.org/10.1002/jnr.10353
  30. Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220 https://doi.org/10.1016/0092-8674(94)90012-4
  31. Niwa, S., Y. Tanaka, and N. Hirokawa. 2008. KIF1Bbetaand KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 10, 1269-1279 https://doi.org/10.1038/ncb1785
  32. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780 https://doi.org/10.1016/0092-8674(95)90538-3
  33. Okazaki, T., B. N. Yoshida, K. B. Avraham, H. Wang, C. W. Wuenschell, N. A. Jenkins, N. G. Copeland, D. J. Anderson, and N. Mori. 1993. Molecular diversity of the SCG10/stathmin gene family in the mouse. Genomics 18, 360-373 https://doi.org/10.1006/geno.1993.1477
  34. Poulain, F. E. and A. Sobel. 2007. The 'SCG10-LIke Protein' SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell Neurosci. 34, 137-146 https://doi.org/10.1016/j.mcn.2006.10.012
  35. Reid, E., M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. K. Svenson, F. L. Graham, P. C. Gaskell, A. Dearlove, M. A. Pericak-Vance, D. C. Rubinsztein, and D. A. Marchuk. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194 https://doi.org/10.1086/344210
  36. Riederer, B. M., V. Pellier, B. Antonsson, G. Di Paolo, S. A. Stimpson, R. Lutjens, S. Catsicas, and G. Grenningloh. 1997. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc. Natl. Acad. Sci. USA 94, 741-745 https://doi.org/10.1073/pnas.94.2.741
  37. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 3rd Edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York
  38. Schubart, U. K., J. Yu, J. A. Amat, Z. Wang, M. K. Hoffmann, and W. Edelmann. 1996. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J. Biol. Chem. 271, 14062-14066 https://doi.org/10.1074/jbc.271.24.14062
  39. Seog, D. H. and I. S. Moon. 2008. $\gamma$-Aminobutyric acid transporter 2 binds to the PDZ domain of mammalian Lin-7. Journal of Life Science 18, 940-946 https://doi.org/10.5352/JLS.2008.18.7.940
  40. Seog, D. H., D. H. Lee, and S. K. Lee. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Korean Medical Science 19, 1-7 https://doi.org/10.3346/jkms.2004.19.1.1
  41. Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  42. Stein, R., N. Mori, K. Matthews, L. C. Lo, and D. J. Anderson. 1988. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463-476 https://doi.org/10.1016/0896-6273(88)90177-8
  43. Stein, R., S. Orit, and D. J. Anderson. 1988. The induction of a neural-specific gene, SCG10, by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and glucocorticoid inhibitable. Dev. Biol. 127, 316-325 https://doi.org/10.1016/0012-1606(88)90318-1
  44. Suh, L. H., S. F. Oster, S. S. Soehrman, G. Grenningloh, and D. W. Sretavan. 2004. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976-1986 https://doi.org/10.1523/JNEUROSCI.1670-03.2004
  45. Tararuk, T., N. Ostman, W. Li, B. Bjorkblom, A. Padzik, J. Zdrojewska, V. Hongisto, T. Herdegen, W. Konopka, M. J. Courtney, and E. T. Coffey. 2006. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265-277 https://doi.org/10.1083/jcb.200511055
  46. Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467-480 https://doi.org/10.1016/S0092-8674(03)00111-9
  47. Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970 https://doi.org/10.1083/jcb.152.5.959
  48. Warita, H., Y. Itoyama, and K. Abe. 1999. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res. 819, 120-131 https://doi.org/10.1016/S0006-8993(98)01351-1
  49. Williamson, T. L. and D. W. Cleveland. 1999. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56 https://doi.org/10.1038/4553
  50. Yang, J. T., R. A. Laymon, and L. S. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889 https://doi.org/10.1016/0092-8674(89)90692-2
  51. Zakharenko, S. S., J. Joseph, S. Vronskaya, D. Yin, U. K. Schubart, E. R. Kandel, and V. Y. Bolshakov. 2005. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123, 697-709 https://doi.org/10.1016/j.cell.2005.08.038
  52. Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597 https://doi.org/10.1016/S0092-8674(01)00363-4