생태위해성 평가를 위한 독성동태학 및 독성역학 모델

Toxicokinetic and Toxicodynamic Models for Ecological Risk Assessment

  • 이종현 ((주)네오엔비즈, 환경안전연구소)
  • Lee, Jong-Hyeon (NeoEnBiz Co. Institute of Environmental Protection and Safety)
  • 발행 : 2009.06.30

초록

오염물질에 대한 생태위해성평가(ecological risk assessment)를 위해서는 노출평가(exposure assessment)와 함께 생물영향에 대한 평가(effect assessment)를 수행해야 한다. 노출평가의 경우는 지화학적 과정에 대한 이해를 바탕으로 환경농도를 예측하기 위한 화학평형모델이나 다매체환경거동모델 등 다양한 평가 및 예측모델을 활용해 왔다. 이와 달리 생물영향평가는 실험실 조건에서 제한된 독성자료를 대상으로 외부노출농도에 기반한 농도-반응관계를 통계적 방법을 통해서 추정하는 '경험적 모델(empirical model)'에 주로 의존해 왔다. 최근에 와서 생체 내 잔류량을 기반으로 농도-시간-반응관계를 기술하고 예측하는 독성동태학 및 독성역학 모델(toxicokinetic-toxicodynamic model)과 같은 독성작용에 기반한 모델(processbased model)들이 개발되어 활용되고 있다. 본 논문에서는 여러 종류의 독성동태학 및 독성역학 모델을 소개하고, 이를 통계적 추론에 기반한 전통적인 독성학 모델과 비교하였다. 서로 다른 종류의 독성동태학 및 독성역학 모델로부터 도출된 노출농도-시간 -반응관계식을 비교하고, 동일 독성기작을 보이는 오염물질 그룹 내에서 미측정 오염물질의 독성을 예측할 수 있게 해주는 구조-활성관계(Quantitative Structure-Activity Relationship, QSAR) 모델을 여러 독성동태 및 독성역학모델로부터 유도하였다. 마지막으로 독성동태학 및 독성역학 파라미터를 추정하기 위한 실험계획을 제안하였고, 앞으로 독성동태학 및 독성역학 모델을 생태계 위해성평가에 활용하기 위해서 해결해야 될 연구과제를 검토하였다.

키워드

참고문헌

  1. Barnthouse LW. Quantifying population recovery rates for ecological risk assessment, Environ Toxicol Chem 2003; 23(2): 500-508 https://doi.org/10.1897/02-521
  2. Chaisuksant Y, Yu QM and Connell D. Internal lethal concentrations of halobenzenes with fish (Gambusia affinis), Ecotox Environ Saf 1997; 37: 66-75 https://doi.org/10.1006/eesa.1997.1524
  3. Christensen ER. Dose-response function in aquatic toxicity testing and the Weinull model, Water Res 1984; 18: 213-221 https://doi.org/10.1016/0043-1354(84)90071-X
  4. Cox C. Threshold dose-response models in toxicology, Biometrics 1987; 43: 511-524 https://doi.org/10.2307/2531991
  5. De Maagd PGJ, Van de Klundert ICM, Van Wezel AP, Opperhuizen A and Sijm DTHM. Lipid content and time-todeath-dependent lethal body burdens of naphthalene and 1,2,4-trichlorobenzene in fathead minnow (Pimephales promelas), Encotox Environ Saf 1997; 38: 232-237 https://doi.org/10.1006/eesa.1997.1583
  6. Di Toro DM, McGrath JA and Hansen DJ. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem 2000; 19: 1951-1970 https://doi.org/10.1002/etc.5620190803
  7. Escher BI and Hermens JLM. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ Sci Technol 2002; 36: 4201-4217 https://doi.org/10.1021/es015848h
  8. Filov VA, Golubev AA, Liublina EI and Tolokontsev NA. Quantitative Toxicology: Selected Topics, New York, 1979
  9. Finney DJ. Statistical method in biological assay, London, Charles Griffin, 1978
  10. Freidig AP, Verhaar HJM and Hermens JLM. Comparing the potency of chemicals with multiple modes of action in aquatic toxicology: acute toxicity due to narcosis cersus reactive toxicity of acrylic compounds, Environ Sci Tehchol 1999; 33: 3038-3043 https://doi.org/10.1021/es990251b
  11. Gerritsen A, van der Hoeven N and Pielaat `a A. The acute toxicity of selected alkylphenols to young and adult Daphnia magna, Ecotoxicol Environ Safety 1998; 39: 227-232 https://doi.org/10.1006/eesa.1997.1578
  12. Green RH. Estimation of tolerance over an indefinite time period, Ecology 1965; 46: 887 https://doi.org/10.2307/1934028
  13. Hanes B and Wedel T. A selected review of risk models: one hit, multihit, multistage, probit, Weibull, and pharmacokinetic, J Am Coll Toxicol 1985; 4: 271-278 https://doi.org/10.3109/10915818509078679
  14. Hawker DW and Connell DW. Relationships between partition coefficient, uptake rate constants, and the time to equilibrium for bioaccumulation, Chemosphere 1985; 14: 1205-1219 https://doi.org/10.1016/0045-6535(85)90142-0
  15. Herman JLM. Quantitative structure-activity relationships of environmental pollutants. In: Hutzinger O (ed.), Handbook of Environmental Chemistry. Vol. 2E. Reactions and Processes, pp. 111-162, Springer Verleg, Berlin, 1989
  16. Jager T and Kooijman SALM. Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides, Environ Sci Technol 2005; 39; 8307-8314 https://doi.org/10.1021/es050817y
  17. Kooijman SALM. Dynamic energy and mass budget model in biological system, Cambridge University Press, 2000
  18. Kooijman SALM and Bedaux JJM. The analysis of Aquatic Toxicity Data: VU University Press, Amsterdam, 1996
  19. Kooijman, SALM, Bedaux JJM, Pery ARR and Jager T. Biology-based methods. In: Magaud, H (ed.), Water Quality-Guidance Document on the Statistical Analysis of Ecotoxicity Data. ISO and OECD, Paris, ISO TC 147/SC 5/WG 10/N0390, 2003
  20. Landrum PF, Dupuls WS and Kukkonen J. Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp.: examination of equilibrium-partitioning theory and residue-based effect for assessing hazard, Environ Toxicol Chem 1994; 13: 1769-1780 https://doi.org/10.1002/etc.5620131108
  21. Lee J-H and Landrum PF. Development of a multi-component damage assessment model (MDAM) for time-dependent mixture toxicity with toxicokinetic interactions, Environ Sci Technol 2006a; 40: 1350-1357 https://doi.org/10.1021/es051119g
  22. Lee J-H and Landrum PF. Application of multi-component damage assessment model (MDAM) for the toxicity of metabolized PAH in Hyalella azteca, Environ Sci Technol 2006b; 40: 1341-1349 https://doi.org/10.1021/es051120f
  23. Lee J-H, Landrum PF and Koh C-H. Prediction of timedependent PAH toxicity in Hyalella azteca using a damage assessment model, Environ Sci Technol 2002a; 36: 3131-3138 https://doi.org/10.1021/es011202d
  24. Lee J-H, Landrum PF and Koh C-H. Toxicokinetics and time-dependent PAH toxicity in the amphipod Hyalella azteca, Environ Sci Technol 2002b; 36: 3124-3130 https://doi.org/10.1021/es011201l
  25. Legierse KCHM, Verhaar HJM, Vaes WHJ, Wouter HJ, De Bruijn JHM and Hermens JLM. Analysis of the timedependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model, Environ Sci Tehchol 1999; 33: 917-925 https://doi.org/10.1021/es9805066
  26. Luoma SN and Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept, Environ Sci Technol 2005; 39: 1921-1931 https://doi.org/10.1021/es048947e
  27. Mackay D. Correlation of bioconcentration factors, Environ Sci Technol 1982; 16: 274-278 https://doi.org/10.1021/es00099a008
  28. Mancini JL. A method for calculating the effects, on aquatic organisms, of time varying concentrations, Water Res 1983; 17: 1355-1362 https://doi.org/10.1016/0043-1354(83)90264-6
  29. McCarty LS and Mackay D. Enhancing ecotoxicological modeling and assessment, Environ Sci Tehchol 1993; 27: 1719-1728
  30. McCarty LS, Mackay D, Smith AD, Ozburn GW and Dixon DG. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: neutral narcotic organics, Environ Tox Chem 1992; 11: 917-930 https://doi.org/10.1002/etc.5620110705
  31. McCarty LS, Ozburn GW, Smith AD, Bharath A, Orr D and Dixon DG. Hypothesis formulation and testing in aquatic bioassays: a deterministic model approach, Hydrobiologia 1989; 188/189: 533-542
  32. Morgan BJT. Analysis of Quantal Response Data, Chapman & Hall, London, 1992
  33. Newman MC and Aplin M. Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium chloride toxicity in mosquitofish (Gambusia holbrooki), Aquat Toxicol 1992; 23: 85-96 https://doi.org/10.1016/0166-445X(92)90001-4
  34. Newman MC and McCloskey JT. The individual tolerance concept in not the sole explanation for the probit doseeffect model, Environ Toxicol Chem 2000; 19: 520-526
  35. Rand GM, Wells PG and McCarty LS. Introduction to aquatic toxicology. In Fundermentals of Aquatic Toxicology 2nd edition, ed, Rand GM, Taylor and Francis, Washington DC, pp. 3-67, 1995
  36. Reinert KH, Giddings JM and Judd L. Effect analysis of timevarying or repeated exposures in aquatic ecological risk assessment of agrochemicals, Environ Toxicol Chem 2002; 21: 1977-1992 https://doi.org/10.1002/etc.5620210928
  37. Rozman KK, Doll J and Hayes WJ Jr. Dose, time, and other factors influencing toxicity. In Handbook of Pesticide Toxicology. Vol. 1. Pesticide Risk Characterization, Academic Press, 2002
  38. Sijm DTHM, Schipper M and Opperhuizen A. Toxicolinetics of halogenated benzenes in fish-lethal body burden as a toxicological end-point. Environ Toxicol Chem 1993; 12: 1117-1127 https://doi.org/10.1002/etc.5620120617
  39. Spacie A and Hamelink JL. Alternative models for describing the bioconcentration of organics in fish, Environ Toxicol Chem 1982; 1: 309-320 https://doi.org/10.1002/etc.5620010406
  40. Spargue JB. Measurement of pollutant toxicity to fish. 1. Bioassay methods for acute toxicity, Water Res 1969; 3: 793-821 https://doi.org/10.1016/0043-1354(69)90050-5
  41. Suter II GW. Ecological risk assessment. Lewis Publishers, Boca Raton, Florida, 1993
  42. van den Heuvel MR, McCarty LS, Lanno RP, Hickie BE and Dixon DG. Effect of total body lipid on the toxicity and toxicokinetics of pentachlorophenol in rainbow trout (Oncorhyncus mykiss), Aquat Toxicol 1991; 20: 235-252 https://doi.org/10.1016/0166-445X(91)90062-E
  43. van Hoogen G and Opperhuizen M. Toxicokinetic of chlorobenzenes in fish, Environ Toxicol Chem 1988; 7: 213-219 https://doi.org/10.1002/etc.5620070304
  44. Verhaar HJM, de Wolf W, Dyer S, Legierse KCHM, Seinen W and Hermens JLM. An LC50 vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and resk assessment, Environ Sci Tehchol 1999; 33: 758-763 https://doi.org/10.1021/es980507y
  45. Yu Q, Chaisuksant Y and Connell DW. A model for nonspecific toxicity with aquatic organisms over relatively long periods of exposure time, Chemosphere 1999; 38: 909-918 https://doi.org/10.1016/S0045-6535(98)00220-3