DOI QR코드

DOI QR Code

Influence of Post Deposition Electro-Annealing on the Properties of ITO Thin Film Deposited on a Polymer Substrate

  • Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
  • Published : 2009.09.27

Abstract

Transparent ITO films were deposited on a polycarbonate substrate with RF magnetron sputtering in a pure argon (Ar) and oxygen ($O_2$) gas atmosphere, and then post deposition electro annealed for 20 minutes in a $4{\times}10^{-1}$ Pa vacuum. Electron bombardment with an accelerating voltage of 100 V increased the substrate temperature to $120^{\circ}C$. XRD analysis of the deposited ITO films did not show any diffraction peaks, while electro annealed films indicated the growth of crystallites on the (211), (222), and (400) planes. The sheet resistance of ITO films decreased from 103 to $82{\Omega}/\square$. The optical transmittance of ITO films in the visible wavelength region increased from 85 to 87%. Observation of the work function demonstrated that the electro-annealing increased the work function of ITO films from 4.4 to 4.6 eV. The electro annealed films demonstrated a larger figure of merit of $3.0{\times}10^{-3}{\Omega}^{-1}$ than that of as deposited films. Therefore, the electro annealed films had better optoelectrical performances than as deposited ITO films.

Keywords

References

  1. A. B. Chebotareva, G. G. Untila, T. N. Kost, S. Jorgensen and A. G. Ulyashin, Thin Solid Films, 515, 8505 (2007) https://doi.org/10.1016/j.tsf.2007.03.097
  2. C. May, Y. Tomita, M. Toerker, M. Eritt, F. Loeffler, J. Amelung and K. Leo, Thin Solid Films, 516, 4609 (2008) https://doi.org/10.1016/j.tsf.2007.06.014
  3. Y. S. Kim, J. H. Park and D. Kim, Vacuum, 82, 574 (2008) https://doi.org/10.1016/j.vacuum.2007.08.011
  4. T. K. Yong, T. Y. Tou, R. B. Yang, B. S. Teo and H. K. Yow, Vacuum, 82, 1445 (2008) https://doi.org/10.1016/j.vacuum.2008.03.059
  5. D. Kim, Opt. Mater., 24, 471 (2003) https://doi.org/10.1016/S0925-3467(03)00030-2
  6. L. Meng, J. Gao, R. A. Silva and S. Song, Thin Solid Films, 516, 5454 (2008) https://doi.org/10.1016/j.tsf.2007.07.071
  7. X. W. Sun, H. C. Huang and H. S. Kwok, Appl. Phys. Lett., 68, 2663 (1996) https://doi.org/10.1063/1.116274
  8. M. Sohn, D. Kim, S. Kim and S. Gupta, J. Vac. Sci. Technol., A 21, 1347 (2003) https://doi.org/10.1116/1.1577127
  9. C. Y. Hsu, T. F. Ko and Y. M. Huang, J. Eur. Ceram. Soc., 28, 3065 (2008) https://doi.org/10.1016/j.jeurceramsoc.2008.05.008
  10. D. Lee, S. Shin, J. Choi and K. Yoon, Appl. Surf. Sci., 254 4650 (2008) https://doi.org/10.1016/j.apsusc.2008.01.078
  11. P. K. Biswas, A. De, L. K. Dua and L. Chkoda, Appl. Surf. Sci., 253, 1953 (2006) https://doi.org/10.1016/j.apsusc.2006.03.042
  12. K. Sugiyama, H. Ishii, Y. Ouch and K. Seki, J. Appl. Phys., 87, 295(2000) https://doi.org/10.1063/1.371859
  13. G. Haacke, J. Appl. Phys., 47, 4086 (1976) https://doi.org/10.1063/1.323240