References
- Akashi, H. (2001). Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11(6), 660-6 https://doi.org/10.1016/S0959-437X(00)00250-1
- Akashi, H. (2003). Translational selection and yeast proteome evolution. Genetics 164(4), 1291-303
- Bamshad, M. and S. P. Wooding (2003). Signatures of natural selection in the human genome. Nat. Rev. Genet. 4(2), 99-111 https://doi.org/10.1038/nrg999
- Bierne, N. and A. Eyre-Walker (2004). The genomic rate of adaptive amino acid substitution in Drosophila. Mol. Biol. Evol. 21(7), 1350-60 https://doi.org/10.1093/molbev/msh134
- Bucciantini, M., E. Giannoni, et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880), 507-11 https://doi.org/10.1038/416507a
- Drummond, D. A., J. D. Bloom, et al. (2005). Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102(40), 14338-43 https://doi.org/10.1073/pnas.0504070102
- Drummond, D. A., A. Raval, et al. (2006). A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23(2), 327-37 https://doi.org/10.1093/molbev/msj038
- Fay, J. C., G. J. Wyckoff, et al. (2002). Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415(6875), 1024-6 https://doi.org/10.1038/4151024a
- Fraser, H. B., D. P. Wall, et al. (2003). A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol. Biol. 3, 11 https://doi.org/10.1186/1471-2148-3-11
- Graur, D., W. A. Hide, et al. (1991). Is the guinea-pig a rodent? Nature 351(6328), 649-52 https://doi.org/10.1038/351649a0
- Graur, D. and W. H. Li Fundamentals of molecular evolution, Sinauer Associates
- Hirsh, A. E. and H. B. Fraser (2001). Protein dispensability and rate of evolution. Nature 411(6841), 1046-9 https://doi.org/10.1038/35082561
- Huang, H., E. E. Winter, et al. (2004). Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5(7), R47 https://doi.org/10.1186/gb-2004-5-7-r47
- Jeong, H., S. P. Mason, et al. (2001). Lethality and centrality in protein networks. Nature 411(6833), 41-2 https://doi.org/10.1038/35075138
- Jordan, I. K., I. B. Rogozin, et al. (2002). Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12(6), 962-8 https://doi.org/10.1101/gr.87702.ArticlepublishedonlinebeforeprintinMay2002
- Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res. 11(3), 247-69 https://doi.org/10.1017/S0016672300011459
- Kimura, M. (1983). Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. Proc. Natl. Acad. Sci. U S A 80(20), 6317-6321 https://doi.org/10.1073/pnas.80.20.6317
- Koonin, E. V. and Y. I. Wolf (2006). Evolutionary systems biology: links between gene evolution and function. Curr. Opin. Biotechnol. 17(5), 481-7 https://doi.org/10.1016/j.copbio.2006.08.003
- Krylov, D. M., Y. I. Wolf, et al. (2003). Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13(10), 2229-35 https://doi.org/10.1101/gr.1589103
- Kumar, S. (2005). Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6(8), 654-62 https://doi.org/10.1038/nrg1659
- Liang, H. and W. H. Li (2007). Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends Genet. 23(8), 375-8 https://doi.org/10.1016/j.tig.2007.04.005
- Lopez-Bigas, N. and C. A. Ouzounis (2004). Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32(10), 3108-14 https://doi.org/10.1093/nar/gkh605
- Lynch, M. (2007). The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8(10), 803-13 https://doi.org/10.1038/nrg2192
- Marais, G. and L. Duret (2001). Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans. J. Mol. Evol. 52(3), 275-80 https://doi.org/10.1007/s002390010155
- Marais, G., P. Nouvellet, et al. (2005). Intron size and exon evolution in Drosophila. Genetics 170(1), 481-5 https://doi.org/10.1534/genetics.104.037333
- McInerney, J. O. (2006). The causes of protein evolutionary rate variation. Trends Ecol. Evol. 21(5), 230-2 https://doi.org/10.1016/j.tree.2006.03.008
- Medina, M. (2005). Genomes, phylogeny, and evolutionary systems biology. Proc. Natl. Acad. Sci. U S A 102 Suppl. 1, 6630-5 https://doi.org/10.1073/pnas.0501984102
- Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature 246(5428), 96-8 https://doi.org/10.1038/246096a0
- Pal, C., B. Papp, et al. (2001). Highly expressed genes in yeast evolve slowly. Genetics 158(2), 927-31
- Pal, C., B. Papp, et al. (2006). An integrated view of protein evolution. Nat. Rev. Genet. 7(5), 337-48 https://doi.org/10.1038/nrg1838
- Park, D., J. Park, et al. (2008). Analysis of human disease genes in the context of gene essentiality. Genomics https://doi.org/10.1016/j.ygeno.2008.08.001
- Plotkin, J. B. and H. B. Fraser (2007). Assessing the determinants of evolutionary rates in the presence of noise. Mol. Biol. Evol. 24(5), 1113-21 https://doi.org/10.1093/molbev/msm044
- Rocha, E. P. (2006). The quest for the universals of protein evolution. Trends Genet. 22(8), 412-6 https://doi.org/10.1016/j.tig.2006.06.004
- Rocha, E. P. and A. Danchin (2004). An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol. Biol. Evol. 21(1), 108-16 https://doi.org/10.1093/molbev/msh004
- Sharp, P. M. and W. H. Li (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24(1-2), 28-38 https://doi.org/10.1007/BF02099948
- Sharp, P. M. and W. H. Li (1987). The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281-95 https://doi.org/10.1093/nar/15.3.1281
- Subramanian, S. and S. Kumar (2004). Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168(1), 373-81 https://doi.org/10.1534/genetics.104.028944
- Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283-92 https://doi.org/10.1093/oxfordjournals.molbev.a003913
- Wall, D. P., A. E. Hirsh, et al. (2005). Functional genomic analysis of the rates of protein evolution. Proc. Natl. Acad. Sci. USA 102(15), 5483-8 https://doi.org/10.1073/pnas.0501761102
- Wilke, C. O. and D. A. Drummond (2006). Population genetics of translational robustness. Genetics 173(1), 473-81 https://doi.org/10.1534/genetics.105.051300
- Wolf, Y. I. (2006). Coping with the quantitative genomics 'elephant': the correlation between the gene dispensability and evolution rate. Trends Genet. 22(7), 354-7 https://doi.org/10.1016/j.tig.2006.04.009
- Wright, S. I., C. B. Yau, et al. (2004). Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol. Biol. Evol. 21(9), 1719-26 https://doi.org/10.1093/molbev/msh191
- Yang, J., Z. Gu, et al. (2003). Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. 20(5), 772-4 https://doi.org/10.1093/molbev/msg078
- Zuckerkandl, E. (1976). Evolutionary processes and evolutionary noise at the molecular level. II. A selectionist model for random fixations in proteins. J. Mol. Evol. 7(4), 269-311 https://doi.org/10.1007/BF01743626